An evaluation approach for the response time probability distribution of workflows based on the fluid stochastic Petri net formalism is presented. Firstly, some problems about stochastic workflow net modeling are disc...An evaluation approach for the response time probability distribution of workflows based on the fluid stochastic Petri net formalism is presented. Firstly, some problems about stochastic workflow net modeling are discussed. Then how to convert a stochastic workflow net model into a fluid stochastic Petri net model is described. The response time distribution can be obtained directly upon the transient state solution of the fluid stochastic Petri net model. In the proposed approach, there are not any restrictions on the structure of workflow models, and the processing times of workflow tasks can be modeled by using arbitrary probability distributions. Large workflow models can be efficiently tackled by recursively using a net reduction technique.展开更多
In order to improve network connectivity in clustered wireless sensor networks,a node cooperative algorithm based on virtual antenna arrays is proposed.All the nodes in the network are assumed to be clustered via Pois...In order to improve network connectivity in clustered wireless sensor networks,a node cooperative algorithm based on virtual antenna arrays is proposed.All the nodes in the network are assumed to be clustered via Poisson Voronoi tessellation(PVT).The activation of the node cooperative algorithm is determined by the cluster heads(CHs) according to communication links.When the cooperative algorithm is activated,the CH selects cooperative nodes(CNs) from its members to form a virtual antenna array.With the cooperation,nodes can extend the inter-cluster communication range to directly contact with further nodes after a coverage hole is detected,or compensate for channel gains while inter-cluster transmission fails due to deep channel fading.Simulation results show that the proposed algorithm achieves better network connectivity and energy efficiency.It can reduce outage probability,sustain network connectivity and maintain operations as long as possible,which prolongs network operation time.展开更多
基金The National Natural Science Foundation of China(No.60175027).
文摘An evaluation approach for the response time probability distribution of workflows based on the fluid stochastic Petri net formalism is presented. Firstly, some problems about stochastic workflow net modeling are discussed. Then how to convert a stochastic workflow net model into a fluid stochastic Petri net model is described. The response time distribution can be obtained directly upon the transient state solution of the fluid stochastic Petri net model. In the proposed approach, there are not any restrictions on the structure of workflow models, and the processing times of workflow tasks can be modeled by using arbitrary probability distributions. Large workflow models can be efficiently tackled by recursively using a net reduction technique.
基金The National Natural Science Foundation of China ( No.60872004, 60972026)the Important National Science and Technology Specific Projects (No. 2010ZX03006-002-01)the Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2010A08)
文摘In order to improve network connectivity in clustered wireless sensor networks,a node cooperative algorithm based on virtual antenna arrays is proposed.All the nodes in the network are assumed to be clustered via Poisson Voronoi tessellation(PVT).The activation of the node cooperative algorithm is determined by the cluster heads(CHs) according to communication links.When the cooperative algorithm is activated,the CH selects cooperative nodes(CNs) from its members to form a virtual antenna array.With the cooperation,nodes can extend the inter-cluster communication range to directly contact with further nodes after a coverage hole is detected,or compensate for channel gains while inter-cluster transmission fails due to deep channel fading.Simulation results show that the proposed algorithm achieves better network connectivity and energy efficiency.It can reduce outage probability,sustain network connectivity and maintain operations as long as possible,which prolongs network operation time.