S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjus...S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.展开更多
The research was conducted to develop a robot that can navigate a paddy in between rows or hills which were transplanted by the machine transplanter with equal distance. An initial prototype robotic battery-type weede...The research was conducted to develop a robot that can navigate a paddy in between rows or hills which were transplanted by the machine transplanter with equal distance. An initial prototype robotic battery-type weeder was manufactured and tested to navigate and control weeds in rice paddy fields, but a speed was so slow, and thus second engine-type prototype was developed. A working acreage for weed control has been attained at and up to 0.8 ha/day. Small and young weed seedlings were uprooted and destroyed by passive devices in between rows as well as hills. This robot was smoothly navigated in between rows on behalf of the guidance under camera and sensor systems and control weeds with mechanical by the use of implements such as passive rotary weeders and then weeds would be cut and buried into the soils. Also muddy water was generated during operation which was none penetrated by light for weed germination to occur. The authors concluded that the robotic was an effective alternative implement to control weeds in lowland rice paddy as long as this tool was systematically introduced into the rice fields at three time intervals, viz. 15-20 days, 25-30days, and 35-40 days after transplanting of rice seedlings.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50579007
文摘S-surface control has proven to be an effective means for motion control of underwater autonomous vehicles(AUV).However there are still problems maintaining steady precision of course due to the constant need to adjust parameters,especially where there are disturbing currents.Thus an intelligent integral was introduced to improve precision.An expert S-surface control was developed to tune the parameters on-line,based on the expert system,it provides S-surface control according to practical experience and control knowledge.To prevent control output over-compensation,a fuzzy neural network was included to adjust the production rules to the knowledge base.Experiments were conducted on an AUV simulation platform,and the results show that the expert S-surface controller performs better than an S-surface controller in environments with currents,producing good steady precision of course in a robust way.
文摘The research was conducted to develop a robot that can navigate a paddy in between rows or hills which were transplanted by the machine transplanter with equal distance. An initial prototype robotic battery-type weeder was manufactured and tested to navigate and control weeds in rice paddy fields, but a speed was so slow, and thus second engine-type prototype was developed. A working acreage for weed control has been attained at and up to 0.8 ha/day. Small and young weed seedlings were uprooted and destroyed by passive devices in between rows as well as hills. This robot was smoothly navigated in between rows on behalf of the guidance under camera and sensor systems and control weeds with mechanical by the use of implements such as passive rotary weeders and then weeds would be cut and buried into the soils. Also muddy water was generated during operation which was none penetrated by light for weed germination to occur. The authors concluded that the robotic was an effective alternative implement to control weeds in lowland rice paddy as long as this tool was systematically introduced into the rice fields at three time intervals, viz. 15-20 days, 25-30days, and 35-40 days after transplanting of rice seedlings.