储能系统的投资过程主要包括初始购置、运维和置换三个阶段,不同的应用工况将对电池储能系统的寿命衰减速率产生差异化影响,进而影响其成本投入过程,也是储能系统经济评估中的必要考虑因素。面向储能系统的经济性动态评估,首先定义温度...储能系统的投资过程主要包括初始购置、运维和置换三个阶段,不同的应用工况将对电池储能系统的寿命衰减速率产生差异化影响,进而影响其成本投入过程,也是储能系统经济评估中的必要考虑因素。面向储能系统的经济性动态评估,首先定义温度、倍率、放电深度(Depth of Discharge,DOD)、充放电频次等作为储能工况特征量。基于工况特征量与电池寿命损耗之间的关联关系,建立了计及工况特征参量的储能系统出力模型和成本模型。基于全寿命周期成本模型(Life Cycle Cost,LCC)和遗传算法,分析了工况特征量在储能成本评估中考虑的必要性及其影响程度。最后,在平抑光伏波动和负荷侧削峰填谷两种工况下展开算例分析,验证了在储能规划过程中考虑工况特征量的必要性。该研究将为储能规划阶段的经济性评估提供理论依据与数据基础。展开更多
文摘储能系统的投资过程主要包括初始购置、运维和置换三个阶段,不同的应用工况将对电池储能系统的寿命衰减速率产生差异化影响,进而影响其成本投入过程,也是储能系统经济评估中的必要考虑因素。面向储能系统的经济性动态评估,首先定义温度、倍率、放电深度(Depth of Discharge,DOD)、充放电频次等作为储能工况特征量。基于工况特征量与电池寿命损耗之间的关联关系,建立了计及工况特征参量的储能系统出力模型和成本模型。基于全寿命周期成本模型(Life Cycle Cost,LCC)和遗传算法,分析了工况特征量在储能成本评估中考虑的必要性及其影响程度。最后,在平抑光伏波动和负荷侧削峰填谷两种工况下展开算例分析,验证了在储能规划过程中考虑工况特征量的必要性。该研究将为储能规划阶段的经济性评估提供理论依据与数据基础。