In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For...In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction.展开更多
The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LS...The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LSSVM) and multivariable regression(MVR) models was presented to identify the real power transfer between generators and loads.These AI techniques adopt supervised learning,which first uses modified nodal equation(MNE) method to determine real power contribution from each generator to loads.Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of various AI methods compared to that of the MNE method.展开更多
基金supported by the University of Tabriz under grant No. 1117394325
文摘In the current study, the efficiency of Wavelet-based Least Square Support Vector Machine (WLSSVM) model was examined for prediction of daily and monthly Suspended Sediment Load (SSL) of the Mississippi River. For this purpose, in the first step, SSL was predicted via ad hoc LSSVM and Artificial Neural Network (ANN) models; then, streamflow and SSL data were decomposed into sub- signals via wavelet, and these decomposed sub-time series were imposed to LSSVM and ANN to simulate discharge-SSL relationship. Finally, the ability of WLSSVM was compared with other models in multi- step-ahead SSL predictions. The results showed that in daily SSL prediction, LSSVM has better outcomes with Determination Coefficient (DC)=o.92 than ad hoc ANN with DC=o.88. However unlike daily SSL, in monthly modeling, ANN has a bit accurate upshot. WLSSVM and wavelet-based ANN (WANN) models showed same consequences in daily and different in monthly SSL predictions, and adding wavelet led to more accuracy of LSSVM and ANN. Furthermore, conjunction of wavelet to LSSVM and ANN evaluated via multi-step-ahead SSL predictions and, e.g., DCLssVM=0.4 was increased to the DCwLsSVM=0.71 in 7- day ahead SSL prediction. In addition, WLSSVM outperformed WANN by increment of time horizon prediction.
基金the Ministry of Higher Education,Malaysia (MOHE) for the financial funding of this projectUniversiti Kebangsaan Malaysia and Universiti Teknologi Malaysia for providing infrastructure and moral support for the research work
文摘The application of various artificial intelligent(AI) techniques,namely artificial neural network(ANN),adaptive neuro fuzzy interface system(ANFIS),genetic algorithm optimized least square support vector machine(GA-LSSVM) and multivariable regression(MVR) models was presented to identify the real power transfer between generators and loads.These AI techniques adopt supervised learning,which first uses modified nodal equation(MNE) method to determine real power contribution from each generator to loads.Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques.The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of various AI methods compared to that of the MNE method.