Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping chara...Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.展开更多
Potential failures of electronic instrument are very common in the engineering practice.In this paper,potential failure state model is analyzed based on dynamic characteristics of electronic instrument at work and a c...Potential failures of electronic instrument are very common in the engineering practice.In this paper,potential failure state model is analyzed based on dynamic characteristics of electronic instrument at work and a comprehensive method of judging multi-state reliability is put forward.Then,a multi-state electronic instrument reliability analysis model is built based on Bayesian Networks(BN).Considering the failure-potential failure-normal work states,the model is built to estimate reliability of the system and the conditional probability of the elements.Finally,the model is proved corrective and effective by examples.展开更多
文摘Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.
基金supported by the Natural Science Foundation of China(No.60971092)
文摘Potential failures of electronic instrument are very common in the engineering practice.In this paper,potential failure state model is analyzed based on dynamic characteristics of electronic instrument at work and a comprehensive method of judging multi-state reliability is put forward.Then,a multi-state electronic instrument reliability analysis model is built based on Bayesian Networks(BN).Considering the failure-potential failure-normal work states,the model is built to estimate reliability of the system and the conditional probability of the elements.Finally,the model is proved corrective and effective by examples.