To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.N...To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.Nanographite powder(NGP)has excellent properties,such as high adsorption,conductivity,and lubrication,since it has the characteristics of small size,large specific surface area,and high surface energy.However,previous studies on the improvement of expansive soil with NGP are not processed enough.To study the improvement effect of NGP on expansive soil,non-load swelling ratio tests,consolidation tests,unconfined compressive strength tests,mercury injection tests,and micro-CT tests on expansive soil mixed with different NGP contents were performed.The results show that the non-load swelling ratio,mechanical properties,and porosity of expansive soil show some increasement after adding NGP.The strength of expansive soil reaches the maximum when the NGP content is 1.450%.The cumulative mercury volume and compressive strain of expansive soil reach the maximum with the 2.0%NGP content.Finally,the modification mechanism of swelling,compressibility,microstructure,and compressive strength of expansive soil by NGP is revealed.展开更多
Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of ...Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of pulsed laser ablation and low-temperature annealing post-processing. An inclined cone structure array is made on stainless steel surfaces, and then 120 °C low-temperature annealing is applied. Such surface displays excellent mechanical durability and anisotropic superhydrophobicity. It is demonstrated experimentally that the contact angle of water droplets on the surface is different along the parallel(167° ±2°) and perpendicular directions(157° ±2°) of the inclined cone structure. The sliding behaviors of water droplets and mechanical durability of the inclined cone structures are studied. These surfaces obtained in a short time with environmentally friendly fabrication can be applied in industries for water harvesting, droplet manipulation, and pipeline transportation.展开更多
This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under di...This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution.展开更多
The effects of RE on the microstrcture of as-cast Mg-8Zn-4Al magnesium alloys were investigated. The results show that the solidification range of Mg-8Zn-4Al-xRE alloys increases with RE additions. A binary eutectic r...The effects of RE on the microstrcture of as-cast Mg-8Zn-4Al magnesium alloys were investigated. The results show that the solidification range of Mg-8Zn-4Al-xRE alloys increases with RE additions. A binary eutectic reaction can arise and produce a new phase (Mg:Al:Zn:RE) and the temperature of phase transformation point of the new phase is 412.85 C. In Mg-8Zn-4Al-1.5RE alloy, a small amount of Mg:Al:Zn:RE phase and ε phases are found besides a(Mg),φand r phases. Also microstructures of Mg-8Zn-4Al alloys can be refined by addition of 1.5% RE obviously.展开更多
A new brush plating process with a soluble anode of nickel was introduced. TDY112 brush plating solution was used on the No.20 carbon steel substrate. It has the higher deposit velocity, better properties and lower co...A new brush plating process with a soluble anode of nickel was introduced. TDY112 brush plating solution was used on the No.20 carbon steel substrate. It has the higher deposit velocity, better properties and lower cost. Scanning electronic microscopy(SEM), optical microscope, microhardness test and wear test were adopted to detect the surface quality and the properties of the coating, such as micrograph, microstructure, micro-hardness wear resistance and adherence between the coating and the substrate. The experimental results showed that the suitable technological parameters to be used, the coatings had better the surface quality, higher hardness and wear resistance.展开更多
Researching residual oil distribution not only is a difficulty in the world, but also is the pioneering research subject in different fields such as geology, physical geography and reservoir engineering. The modem geo...Researching residual oil distribution not only is a difficulty in the world, but also is the pioneering research subject in different fields such as geology, physical geography and reservoir engineering. The modem geology technique, well logging technology and reservoir engineering technique develops rapidly, which provides favorable conditions for researching residual oil distribution.展开更多
In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under differen...In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under different freezing temperatures,the authors carried out freeze-thaw cycle tests for 3 times and 20 times,respectively.With mercury intrusion porosimetry and granulometric analysis,from the micro-structure,the authors studied the law that freeze-thaw cycle times and frozen temperature effect on the variation of microscopic pore of loesslike soil.This result can provide theoretical basis for comprehensive treatment of problems in the construction of the project in seasonal frozen loess-like soil region.展开更多
Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure ...Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure of hind wings, which occurs under the stiff elytra after flight, still remains unknown. In this paper, the wing folding process and the surficial microstructures of elytra, hind wing and abdomen are investigated by video recording and scanning electron microscopy. The results show that there are hooklike protrusions approximately 15 μm in length distributing on the inner side of elytra, and bump-like protrusions on the hind wings. The 'hooks' may anchor the 'bumps' on the main wing to prevent corrugation during folding. The horizontal protrusions observed on the abdomen shape a hairy cuticle, which is conducive to a better wing-abdomen interaction. Thus, the ratcheting mechanism that wing folding facilitated by micro-protrusions on the body surface is revealed. This new finding helps us to further understand the functions of diversely shaped protrusions in the physiology of insects. More importantly, the ratcheting mechanism could serve as a cuticle interaction model and inspire new engineering applications, such as microsystems.展开更多
基金Project(2017TFC1503102)supported by the National Key Research and Development Project,ChinaProjects(51874065,U1903112)supported by the National Natural Science Foundation of China。
文摘To reduce geological disasters caused by expansive soil,it is crucial to use a new type of modified material to rapidly improve soil strength instead of traditional soil improvement materials such as lime and cement.Nanographite powder(NGP)has excellent properties,such as high adsorption,conductivity,and lubrication,since it has the characteristics of small size,large specific surface area,and high surface energy.However,previous studies on the improvement of expansive soil with NGP are not processed enough.To study the improvement effect of NGP on expansive soil,non-load swelling ratio tests,consolidation tests,unconfined compressive strength tests,mercury injection tests,and micro-CT tests on expansive soil mixed with different NGP contents were performed.The results show that the non-load swelling ratio,mechanical properties,and porosity of expansive soil show some increasement after adding NGP.The strength of expansive soil reaches the maximum when the NGP content is 1.450%.The cumulative mercury volume and compressive strain of expansive soil reach the maximum with the 2.0%NGP content.Finally,the modification mechanism of swelling,compressibility,microstructure,and compressive strength of expansive soil by NGP is revealed.
基金Project(A19C2a0019) supported by the Advanced Remanufacturing and Technology Centre (ARTC) under its RIE2020 Advanced Manufacturing and Engineering (AME) IAF PP,Singapore。
文摘Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of pulsed laser ablation and low-temperature annealing post-processing. An inclined cone structure array is made on stainless steel surfaces, and then 120 °C low-temperature annealing is applied. Such surface displays excellent mechanical durability and anisotropic superhydrophobicity. It is demonstrated experimentally that the contact angle of water droplets on the surface is different along the parallel(167° ±2°) and perpendicular directions(157° ±2°) of the inclined cone structure. The sliding behaviors of water droplets and mechanical durability of the inclined cone structures are studied. These surfaces obtained in a short time with environmentally friendly fabrication can be applied in industries for water harvesting, droplet manipulation, and pipeline transportation.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41430634)the State Key Laboratory of Geomechanics and Geotechnical Engineering (Grant No. Y11002)
文摘This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution.
文摘The effects of RE on the microstrcture of as-cast Mg-8Zn-4Al magnesium alloys were investigated. The results show that the solidification range of Mg-8Zn-4Al-xRE alloys increases with RE additions. A binary eutectic reaction can arise and produce a new phase (Mg:Al:Zn:RE) and the temperature of phase transformation point of the new phase is 412.85 C. In Mg-8Zn-4Al-1.5RE alloy, a small amount of Mg:Al:Zn:RE phase and ε phases are found besides a(Mg),φand r phases. Also microstructures of Mg-8Zn-4Al alloys can be refined by addition of 1.5% RE obviously.
文摘A new brush plating process with a soluble anode of nickel was introduced. TDY112 brush plating solution was used on the No.20 carbon steel substrate. It has the higher deposit velocity, better properties and lower cost. Scanning electronic microscopy(SEM), optical microscope, microhardness test and wear test were adopted to detect the surface quality and the properties of the coating, such as micrograph, microstructure, micro-hardness wear resistance and adherence between the coating and the substrate. The experimental results showed that the suitable technological parameters to be used, the coatings had better the surface quality, higher hardness and wear resistance.
文摘Researching residual oil distribution not only is a difficulty in the world, but also is the pioneering research subject in different fields such as geology, physical geography and reservoir engineering. The modem geology technique, well logging technology and reservoir engineering technique develops rapidly, which provides favorable conditions for researching residual oil distribution.
文摘In seasonal frozen soil region,the engineering geological properties of loess-like soil will be deteriorated after freeze-thaw cycles.Through the freeze-thaw cycle experiment of remolded loess-like soil,under different freezing temperatures,the authors carried out freeze-thaw cycle tests for 3 times and 20 times,respectively.With mercury intrusion porosimetry and granulometric analysis,from the micro-structure,the authors studied the law that freeze-thaw cycle times and frozen temperature effect on the variation of microscopic pore of loesslike soil.This result can provide theoretical basis for comprehensive treatment of problems in the construction of the project in seasonal frozen loess-like soil region.
基金supported by the National Natural Science Foundation of China(51176087)
文摘Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure of hind wings, which occurs under the stiff elytra after flight, still remains unknown. In this paper, the wing folding process and the surficial microstructures of elytra, hind wing and abdomen are investigated by video recording and scanning electron microscopy. The results show that there are hooklike protrusions approximately 15 μm in length distributing on the inner side of elytra, and bump-like protrusions on the hind wings. The 'hooks' may anchor the 'bumps' on the main wing to prevent corrugation during folding. The horizontal protrusions observed on the abdomen shape a hairy cuticle, which is conducive to a better wing-abdomen interaction. Thus, the ratcheting mechanism that wing folding facilitated by micro-protrusions on the body surface is revealed. This new finding helps us to further understand the functions of diversely shaped protrusions in the physiology of insects. More importantly, the ratcheting mechanism could serve as a cuticle interaction model and inspire new engineering applications, such as microsystems.