Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The q...Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The quantification of their reliability under an earthquake occurrence should be highly regarded, because the performance of these systems during a destructive earthquake is vital in order to estimate direct and indirect economic losses from lifeline failures, and is also related to laying out a rescue plan. The research in this paper aims to develop a new earthquake reliability calculation methodology for lifeline systems. The methodology of the network reliability for lifeline systems is based on fault tree analysis (FTA) and geological information system (GIS). The interactions existing in a lifeline system ale considered herein. The lifeline systems are idealized as equivalent networks, consisting of nodes and links, and are described by network analysis in GIS. Firstly, the node is divided into two types: simple node and complicated node, where the reliability of the complicated node is calculated by FTA and interaction is regarded as one factor to affect performance of the nodes. The reliability of simple node and link is evaluated by code. Then, the reliability of the entilre network is assessed based on GIS and FTA. Lastly, an illustration is given to show the methodology.展开更多
The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from s...The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo_geological data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥i)=10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.展开更多
The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis ...The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. In particular it focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements (Down Hole D-H and Seismic Dilatometer Marchetti Test SDMT). Moreover the variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic or cyclic tests for soil characterisation (Resonant Column Test RCT) was evaluated. The available data enabled one to compare the shear waves velocity profile obtained by laboratory and in situ tests (Cone Penetration Tests CPT) with empirical correlations proposed in literature.展开更多
This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of ma...This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.展开更多
This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of proje...This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.展开更多
Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occu...Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occurred during the water storage stages, in which the largest was the Badong M5.1 earthquake on December 16, 2013. In this paper, the relationships between seismic activities, b value, seismic parameters, and reservoir water level fluctuations are studied. In addition, based on the digital seismic waveform data obtained since 2000, the focal depth changes and focal mechanism characteristics before and after the water impoundment are studied as well. These provide us important information to understand the earthquake mechanisms. The results show that these earthquakes are typical reservoir-induced earthquakes, which are closely related to water infiltration, pore pressure, and water level fluctuations.The majority of the micro and small earthquakes are caused by karst collapse, mine collapse, bank reformation, superficial unloading, and so on. The larger earthquakes are related to the fault structures to some extent. Due to the persistent effects of water impoundment on the seismic and geological environments around the reservoir and water infiltration into the rocks, the influences on the crustal deformation field, gravity field, seepage field, and fault medium-softening action may vary gradually from a higher strength to a weaker one. Therefore, it is possible that small earthquakes and few medium earthquakes(M≤5.5) will occur in the reservoir area in the future.展开更多
基金Sponsored by the Natural Science Foundation of China (Grant No.50278028) the Scientific Research Foundation of Harbin Institute of Technology(Grant No.HIT200079).
文摘Lifelines, such as pipeline, transportation, communication, electric transmission and medical rescue systems, are complicated networks that always distribute spatially over large geological and geographic units. The quantification of their reliability under an earthquake occurrence should be highly regarded, because the performance of these systems during a destructive earthquake is vital in order to estimate direct and indirect economic losses from lifeline failures, and is also related to laying out a rescue plan. The research in this paper aims to develop a new earthquake reliability calculation methodology for lifeline systems. The methodology of the network reliability for lifeline systems is based on fault tree analysis (FTA) and geological information system (GIS). The interactions existing in a lifeline system ale considered herein. The lifeline systems are idealized as equivalent networks, consisting of nodes and links, and are described by network analysis in GIS. Firstly, the node is divided into two types: simple node and complicated node, where the reliability of the complicated node is calculated by FTA and interaction is regarded as one factor to affect performance of the nodes. The reliability of simple node and link is evaluated by code. Then, the reliability of the entilre network is assessed based on GIS and FTA. Lastly, an illustration is given to show the methodology.
文摘The seismotectonic method is used to study the seismogenic structures and the maximum potential earthquake around an engineering site in order to determine the seismic risk at the site. Analysis of seismic risk from site effect seismic intensity data, in combination with regional seismo_geological data, using the seismotectonic method can provide a more reliable result. In this paper, taking the area of six reservoir dam sites in western Anhui as an example, we analyze the seismic risk from site effect seismic intensity data in combination with the seismotectonic conditions and find that P (I≥i)=10% over 50 years. The result shows that the seismogenic structure and the maximum potential earthquake have a controlling effect on seismic risk from future earthquakes in the area around the site.
文摘The spatial variability of geotechnical earthquake engineering critical parameters obtained by laboratory and in situ tests in the same area is affected by different measurements. The paper provides a brief synthesis of ground motion and site effects analysis procedures within a Performance-Based Design framework. In particular it focuses about the influence on the evaluation of site effects in some active regions by different shear waves velocity measurements (Down Hole D-H and Seismic Dilatometer Marchetti Test SDMT). Moreover the variation of shear modulus and damping ratio with strain level and depth from different laboratory dynamic or cyclic tests for soil characterisation (Resonant Column Test RCT) was evaluated. The available data enabled one to compare the shear waves velocity profile obtained by laboratory and in situ tests (Cone Penetration Tests CPT) with empirical correlations proposed in literature.
基金The School of Mining Engineering,University of the Witwatersrand South Africa is acknowledged for providing support towards the success of this researchSpecifically the Centennial Trust Fund for Rock Engineering is appreciated for funding part of this research
文摘This work studied the effect of increasing degree of metamorphism on the properties of rocks.The properties investigated are the physical,mechanical and dynamic parameters.They are important inputs in the design of many mining and civil engineering techniques such as in tunnelling,slope stability and dynamic activities associated with seismicity and fragmentation.This work compared the degree of metamorphism examined through petrographic studies of the Transvaal Sequence in South Africa with the properties of the rocks.The study shows that as the effect metamorphism increases,the state of stress,compaction of grains,cementation and the brittleness of the rocks increases.In addition,increase in the metamorphic effect increases the value of the rock property.The degree of metamorphism of an outcrop is the key factor influencing its property value.Therefore the metamorphism effect of an outcrop may act as a guide to its engineering properties.
基金sponsored by the Specific Fund of Fundamental Research,Institute of Geophysics,China Earthquake Administration (DQJB16B19)
文摘This paper reviewed the main target,functions,tool( Open Quake software) and research achievements of the Global Earthquake Model( GEM) Foundation,and made a simple prospect on the development and application of projects of GEM in the future. Learning from GEM and Open Quake is helpful to improve the seismic hazard model of China and enhance the scientificity of the seismic hazard assessment for metropolitans and major engineering facilities near major seismogenic structures.
基金supported by the National Natural Science Foundation of China (41572354)the Key Foundation of the Institute of Seismology (IS201616254)
文摘Reservoir-induced earthquakes related with the construction of the Three Gorges Project have attracted great concerns of the public. Since the first water impoundment on May 25, 2003, a number of earthquakes have occurred during the water storage stages, in which the largest was the Badong M5.1 earthquake on December 16, 2013. In this paper, the relationships between seismic activities, b value, seismic parameters, and reservoir water level fluctuations are studied. In addition, based on the digital seismic waveform data obtained since 2000, the focal depth changes and focal mechanism characteristics before and after the water impoundment are studied as well. These provide us important information to understand the earthquake mechanisms. The results show that these earthquakes are typical reservoir-induced earthquakes, which are closely related to water infiltration, pore pressure, and water level fluctuations.The majority of the micro and small earthquakes are caused by karst collapse, mine collapse, bank reformation, superficial unloading, and so on. The larger earthquakes are related to the fault structures to some extent. Due to the persistent effects of water impoundment on the seismic and geological environments around the reservoir and water infiltration into the rocks, the influences on the crustal deformation field, gravity field, seepage field, and fault medium-softening action may vary gradually from a higher strength to a weaker one. Therefore, it is possible that small earthquakes and few medium earthquakes(M≤5.5) will occur in the reservoir area in the future.