In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynam...In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.展开更多
This study is aimed to investigate and analyze the ecological technology around ecological environment resources of engineering in Taiwan. In Taiwan, the natural and artificial material applied in the ecological techn...This study is aimed to investigate and analyze the ecological technology around ecological environment resources of engineering in Taiwan. In Taiwan, the natural and artificial material applied in the ecological technology in internal currently, usually lack of evaluation for applicative conditions. Hence, this study carried on the whole research and identifications to draft the eco-materials of ecological technology. The evaluation models of applied materials for ecological technology were proposed. The quantitative score were obtained by expert's person evaluation. Three models were proposed to quantify the effects of applied materials on the ecological environment. The statistical procedures were adopted to compare the performance of these materials for ecological technology. The results indicated that the comparison of applied materials can be treated by quantitative analysis. For the further analysis, more evaluated data from expert's experience need to be collected then the bias of person subject can be reduced. In addition to reach the benefits in the respects of ecosystem, society, economy and function, also practice the comprehensive effects in ecological technology.展开更多
This study introduces a Landscape Information Modeling±Stable Diffusion(LIM±SD)-based digital workflow for ecological engineered landscaping(EEL)design,focusing on urban river wetlands.It explores how studen...This study introduces a Landscape Information Modeling±Stable Diffusion(LIM±SD)-based digital workflow for ecological engineered landscaping(EEL)design,focusing on urban river wetlands.It explores how students from diverse academic backgrounds perform EEL tasks using the LIM±SD approach.A total of 30 participants,including industrial design postgraduates and landscape architecture undergraduates and postgraduates,completed the design tasks.The efficacy of their designs was assessed through expert evaluations on site appropriateness,aesthetics,spatial layout,and eco-engineering techniques of the design proposals,as well as the parametric simulation which calculated the vegetation coverage rate and proportion of riparian areas for each design.Moreover,evaluation of participants’subjective design experiences was conducted via questionnaires.Results indicated that landscape architecture postgraduates outperformed others applying ecological engineering principles.The study also elucidated discrepancies between LIM models and SD-generated renderings,as well as the uncertainty of SDgenerated renderings,suggesting improvements are needed to align digital outputs with ecological design criteria.展开更多
The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecologi...The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).展开更多
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)
文摘In order to optimize the design of a 12.5 m deepwater channel project and protect the ecological environment, it is necessary to study the habitat evaluation of species in the engineered area. A coupled eco-hydrodynamic model, which combines a hydrodynamic model (ADCIRC) and a habitat suitability index (HSI) model is developed for target fish (Coilia nasus) and benthos (Corbicula fluminea) in the Yangtze River in order to predict the ecological changes and optimize the regulation scheme. Based on the existing research concerning the characteristics of Coilia nasus and Corbicula fluminea, the relationship between the target species and water environment factors is established. The verification results of tidal level, velocity and biological density show that the proposed coupling model performs well when predicting ecological suitability in the studied region. The results indicate a slight improvement in the potential habitat availability for the two species studied as the natural hydraulic conditions change after the deep-water channel regulation works.
文摘This study is aimed to investigate and analyze the ecological technology around ecological environment resources of engineering in Taiwan. In Taiwan, the natural and artificial material applied in the ecological technology in internal currently, usually lack of evaluation for applicative conditions. Hence, this study carried on the whole research and identifications to draft the eco-materials of ecological technology. The evaluation models of applied materials for ecological technology were proposed. The quantitative score were obtained by expert's person evaluation. Three models were proposed to quantify the effects of applied materials on the ecological environment. The statistical procedures were adopted to compare the performance of these materials for ecological technology. The results indicated that the comparison of applied materials can be treated by quantitative analysis. For the further analysis, more evaluated data from expert's experience need to be collected then the bias of person subject can be reduced. In addition to reach the benefits in the respects of ecosystem, society, economy and function, also practice the comprehensive effects in ecological technology.
文摘This study introduces a Landscape Information Modeling±Stable Diffusion(LIM±SD)-based digital workflow for ecological engineered landscaping(EEL)design,focusing on urban river wetlands.It explores how students from diverse academic backgrounds perform EEL tasks using the LIM±SD approach.A total of 30 participants,including industrial design postgraduates and landscape architecture undergraduates and postgraduates,completed the design tasks.The efficacy of their designs was assessed through expert evaluations on site appropriateness,aesthetics,spatial layout,and eco-engineering techniques of the design proposals,as well as the parametric simulation which calculated the vegetation coverage rate and proportion of riparian areas for each design.Moreover,evaluation of participants’subjective design experiences was conducted via questionnaires.Results indicated that landscape architecture postgraduates outperformed others applying ecological engineering principles.The study also elucidated discrepancies between LIM models and SD-generated renderings,as well as the uncertainty of SDgenerated renderings,suggesting improvements are needed to align digital outputs with ecological design criteria.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51021066)the State Key Development Program for Basic Research of China (Grant No. 2010CB951102)
文摘The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).