为研究挖掘机斜盘式轴向柱塞泵的压力、流量特性以及工作过程中出现供油压力不足现象的原因,结合轴向柱塞泵的工作原理,建立泵体主要部件的数学模型.利用多学科领域工程系统仿真高级建模环境(Advanced Modeling Environment for Simulat...为研究挖掘机斜盘式轴向柱塞泵的压力、流量特性以及工作过程中出现供油压力不足现象的原因,结合轴向柱塞泵的工作原理,建立泵体主要部件的数学模型.利用多学科领域工程系统仿真高级建模环境(Advanced Modeling Environment for Simulation of engineering systems,AMESim)软件,建立泵体各部件及整体仿真模型;经过连续调试、运行,合理配置参数,进行系统仿真;以柱塞泵瞬时流量最优时发动机转速和斜盘倾角参数为基准进行优化,并得到接近恒压力特性的结果.该方法可为实际设计提供理论依据和参考,缩短研发周期,加快产品的市场投入.展开更多
We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the...We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the fixed-bed gasifier comprising four sequential reaction zones—drying, pyrolysis, combustion and gasification are respectively modeled. A non-linear programming(NLP) model is developed for the pyrolysis zone to estimate the products composition which includes char, coal gases and distillable liquids. A four-stage model with restricted equilibrium temperature is used to study the thermodynamic equilibrium characteristics and calculate the composition of syngas in the combustion and gasification zones. The thermodynamic analysis shows that the exergetic efficiency of the fixed-bed gasifier is mainly determined by the oxygen/coal ratio. The exergetic efficiency of the process will reach an optimum value of 78.3% when the oxygen/coal and steam/coal mass ratios are 0.14 and 0.80, respectively.展开更多
The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelli...The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.展开更多
文摘为研究挖掘机斜盘式轴向柱塞泵的压力、流量特性以及工作过程中出现供油压力不足现象的原因,结合轴向柱塞泵的工作原理,建立泵体主要部件的数学模型.利用多学科领域工程系统仿真高级建模环境(Advanced Modeling Environment for Simulation of engineering systems,AMESim)软件,建立泵体各部件及整体仿真模型;经过连续调试、运行,合理配置参数,进行系统仿真;以柱塞泵瞬时流量最优时发动机转速和斜盘倾角参数为基准进行优化,并得到接近恒压力特性的结果.该方法可为实际设计提供理论依据和参考,缩短研发周期,加快产品的市场投入.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(U1162121)
文摘We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the fixed-bed gasifier comprising four sequential reaction zones—drying, pyrolysis, combustion and gasification are respectively modeled. A non-linear programming(NLP) model is developed for the pyrolysis zone to estimate the products composition which includes char, coal gases and distillable liquids. A four-stage model with restricted equilibrium temperature is used to study the thermodynamic equilibrium characteristics and calculate the composition of syngas in the combustion and gasification zones. The thermodynamic analysis shows that the exergetic efficiency of the fixed-bed gasifier is mainly determined by the oxygen/coal ratio. The exergetic efficiency of the process will reach an optimum value of 78.3% when the oxygen/coal and steam/coal mass ratios are 0.14 and 0.80, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.61370033)National Basic Research Program of China(Grant No.2013CB035502)+4 种基金Foundation of Chinese State Key Laboratory of Robotics and Systems(Grant Nos.SKLRS201401A01,SKLRS-2014-MS-06)the Fundamental Research Funds for the Central Universities(Grant No.HIT.BRETIII.201411)Harbin Talent Programme for Distinguished Young Scholars(No.2014RFYXJ001)Postdoctoral Youth Talent Foundation of Heilongjiang Province,China(Grant No.LBH-TZ0403)the"111 Project"(Grant No.B07018)
文摘The great success of the Sojourner rover in the Mars Pathfinder mission set off a global upsurge of planetary exploration with autonomous wheeled mobile robots(WMRs),or rovers.Planetary WMRs are among the most intelligent space systems that combine robotic intelligence(robint),virtual intelligence(virtint),and human intelligence(humint) synergetically.This article extends the architecture of the three-layer intelligence stemming from successful Mars rovers and related technologies in order to support the R&D of future tele-operated robotic systems.Double-layer human-machine interfaces are suggested to support the integration of humint from scientists and engineers through supervisory(Mars rovers) or three-dimensional(3D) predictive direct tele-operation(lunar rovers).The concept of multilevel autonomy to realize robint,in particular,the Coupled-Layer Architecture for Robotic Autonomy developed for Mars rovers,is introduced.The challenging issues of intelligent perception(proprioception and exteroception),navigation,and motion control of rovers are discussed,where the terrains' mechanical properties and wheel-terrain interaction mechanics are considered to be key.Double-level virtual simulation architecture to realize virtint is proposed.Key technologies of virtint are summarized:virtual planetary terrain modeling,virtual intelligent rover,and wheel-terrain interaction mechanics.This generalized three-layer intelligence framework is also applicable to other systems that require human intervention,such as space robotic arms,robonauts,unmanned deep-sea vehicles,and rescue robots,particularly when there is considerable time delay.