In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and ...In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.展开更多
全英文课程建设是拓展国际化办学领域的一个新举措,是提高留学生质量的一个重要方面。高分子材料科学与工程专业课程内容涉及面广,包括高分子化学、高分子物理、聚合物制备工程、聚合物加工工程、材料研究方法、模具设计等多方面的知识...全英文课程建设是拓展国际化办学领域的一个新举措,是提高留学生质量的一个重要方面。高分子材料科学与工程专业课程内容涉及面广,包括高分子化学、高分子物理、聚合物制备工程、聚合物加工工程、材料研究方法、模具设计等多方面的知识。"Polymer Materials Science and Engineering"在线课程,将上述内容中的共性问题进行提升凝练,综合了高分子物理、高分子化学、聚合物加工等核心专业课程的精华,面向硕士研究生和留学生开设,特别是针对国际学生的公共选修课程进行建设,采用全英文授课,对核心内容进行了弹性设计。本文介绍了"Polymer Materials Science and Engineering"在线课程建设过程中的体会以及课程特点、实施过程、教学效果及经验体会。展开更多
In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively ...In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.展开更多
文摘In this paper, a study to enhance the filtration for solid/liquid materials difficult to be filtered, such as highly viscous, highly compactible or gel like materials, is presented. Filter aids diatomaceous earth and wood pulp cellulose are used to enhance the filtration by improving filter cake structure and properties in the filtration of a biological health product and a highly viscous chemical fiber polymer melt product. The property of solid/liquidsystems, filtration at different flow rates, specitic cake resistance, cake wetness, filtration rate, filtrate turbidity for filter aid selection and evaluation, and operation optimization are investigated. The results are successfully applied to industrial process, .and can be used as a reference for similar filtration applications.
文摘全英文课程建设是拓展国际化办学领域的一个新举措,是提高留学生质量的一个重要方面。高分子材料科学与工程专业课程内容涉及面广,包括高分子化学、高分子物理、聚合物制备工程、聚合物加工工程、材料研究方法、模具设计等多方面的知识。"Polymer Materials Science and Engineering"在线课程,将上述内容中的共性问题进行提升凝练,综合了高分子物理、高分子化学、聚合物加工等核心专业课程的精华,面向硕士研究生和留学生开设,特别是针对国际学生的公共选修课程进行建设,采用全英文授课,对核心内容进行了弹性设计。本文介绍了"Polymer Materials Science and Engineering"在线课程建设过程中的体会以及课程特点、实施过程、教学效果及经验体会。
基金supported by the National Basic Research Program of China(2014CB643501)the National Natural Science Foundation of China(91433117,91333204 and 21374124)
文摘In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.