Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit...Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
In this work,we studied the electronic band structure of the halogen(F,Cl,and Br)functionalized graphdiynes(GDYs)by using hybrid density functional theory.The results revealed that the bandgap energies of modified GDY...In this work,we studied the electronic band structure of the halogen(F,Cl,and Br)functionalized graphdiynes(GDYs)by using hybrid density functional theory.The results revealed that the bandgap energies of modified GDYs increase as the number of halogen atoms increases.It is also found that the position of the valence band maximum(VBM)is influenced by the electronegativity of halogen atoms.The higher the electronegativity,the deeper the VBM of the GDYs modified by the same number of halogen atoms.Importantly,our results revealed that the bandgap of GDY could be effectively tuned by mixing types of halogen atoms.The new generated conduction band and valence band edges are properly aligned with the oxidation and reduction potentials of water.Further thermodynamic analysis confirms that some models with mixing types of halogen atoms exhibit higher performance of overall photocatalytic water splitting than non-mixing models.This work provides useful insights for designing efficient photocatalysts that can be used for overall water splitting.展开更多
This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eige...This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eigenfunction expansions. A complex dispersion relation is adopted to describe the wave elevation and energy dissipation over submerged porous bars. In the analytical solution, no limitations on the bar number, bar size, and spacing between adjacent bars are set. The convergence of the analytical solution is satisfactory, and the correctness of the analytical solution is confirmed by an independently developed multi-domain BEM (boundary element method) solution. Numerical examples are presented to examine the reflection and transmission coefficients of porous bars, CR and Cv, respectively, for engineering applications. The calculation results show that when the sum of widths for all the porous bars is fixed, increasing the bar number can significantly improve the sheltering function of the bars. Increasing the bar height can cause more wave energy dissipation and lower CR and Cr. The spacing between adjacent bars and the spacing between the last bar and the vertical wall are the key parameters affecting CR and Ct. The proposed analytical method may be used to analyze the hydrodynamic performance of submerged porous bars in preliminary engineering designs.展开更多
Debris flow often causes enormous loss to life and property,especially on alluvial fans.Engineering structures such as retention check dams are essential to reduce the damage.In hazard mitigation evaluation and planni...Debris flow often causes enormous loss to life and property,especially on alluvial fans.Engineering structures such as retention check dams are essential to reduce the damage.In hazard mitigation evaluation and planning it is of significance to determine the location,size and type of dam and the effects of damage mitigation.We present a numerical simulation method using Kanako simulator for hazard mitigation planning of debris flow disaster in Tanjutani Gully,Kyoto City,Japan.The simulations were carried out for three situations:1) the simulations of erosion,deposition,hydrograph changing and inundation when there were no mitigation measures;2) the simulations of check dams in four locations(470 m,810 m,1,210 m and 1,610 m from the upstream end) to identify the best location;3) the simulations of check dams of three types(closed,slit and grid) to analyze their effects on sediment trapping and discharge reduction.Based on the simulations,it was concluded that two closed check dams(located at 470 m and 1,610 m from the upstream end) in the channel and a drainage channel on the alluvial fan can reduce the risk on the alluvial fan to an acceptable level.展开更多
A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solvin...A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.展开更多
This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an im...This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach.展开更多
Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat...Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat equation, and UNIFAC equation. The solubilities calculated by these models are in good agreement with experi-mental data, so that the models can meet the requirements of engineering design.展开更多
In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate co...In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders.展开更多
To enhance the technology and efficiency of strata injection is a problem to be solved urgently. Because of effected by the rough and poor production conditions of mining and the changeable bearing condition of strata...To enhance the technology and efficiency of strata injection is a problem to be solved urgently. Because of effected by the rough and poor production conditions of mining and the changeable bearing condition of strata, the technological process of injection can not be controlled automatically.The fuzzy controlling technology of the coal strata injection is applied. This is the good way to ensure the effectiveness and efficiency of coal strata injection and to solve the current problems of production and safety in mining industry.展开更多
Project-based learning theory is applied in Software English course. The aim is to develop students' professional skill. A professional skill scale of software engineer is introduced with Software English communicati...Project-based learning theory is applied in Software English course. The aim is to develop students' professional skill. A professional skill scale of software engineer is introduced with Software English communicative skill (reading skill, writing skill, listening skill, and communicative skill), engineering thinking habit (skill of design the plan and problem-solving skill), engineering thinking skill, knowledge of software engineering, and Emotion Quotient to deal with problems (Team spirit and communicative skill and self-assessment skill). For software majors, students learn about five stages and job responsibilities in software making process.展开更多
A simple and intuitive manner for solving fluid-structure interaction problem has been developed using Microsoft Excel spreadsheets. By eliminating the need of previous knowledge of any programming language, the metho...A simple and intuitive manner for solving fluid-structure interaction problem has been developed using Microsoft Excel spreadsheets. By eliminating the need of previous knowledge of any programming language, the method appears as an interesting introduction to numerical solutions of partial differential equations, due to the direct and didactic way that it is developed. Proposed procedure enables the analysis of tridimensional geometries using the finite difference method and can be extended to other differential equations or boundary conditions. The author's objective in this paper is to develop a simple and reliable preliminary method for solving acoustic fluid-structure interaction problems with application to dam-reservoir interaction phenomena and also contribute in the educational growth for undergraduate students that are beginning research in such matter.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 52377222)the Natural Science Foundation of Hunan Province, China (Nos. 2023JJ20064, 2023JJ40759)。
文摘Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金funded by the National Natural Science Foundation of China(No.21973013 and No.21673040)the Natural Science Foundation of Fujian Province of China(No.2020J02025)“Chuying Program”for the Top Young Talents of Fujian Province。
文摘In this work,we studied the electronic band structure of the halogen(F,Cl,and Br)functionalized graphdiynes(GDYs)by using hybrid density functional theory.The results revealed that the bandgap energies of modified GDYs increase as the number of halogen atoms increases.It is also found that the position of the valence band maximum(VBM)is influenced by the electronegativity of halogen atoms.The higher the electronegativity,the deeper the VBM of the GDYs modified by the same number of halogen atoms.Importantly,our results revealed that the bandgap of GDY could be effectively tuned by mixing types of halogen atoms.The new generated conduction band and valence band edges are properly aligned with the oxidation and reduction potentials of water.Further thermodynamic analysis confirms that some models with mixing types of halogen atoms exhibit higher performance of overall photocatalytic water splitting than non-mixing models.This work provides useful insights for designing efficient photocatalysts that can be used for overall water splitting.
基金supported by the National Natural Science Foundation of China(Nos.51490675,51322903 and 51279224.)
文摘This study examines oblique wave motion over multiple submerged porous bars in front of a vertical wall. Based on linear potential theory, an analytical solution for the present problem is developed using matched eigenfunction expansions. A complex dispersion relation is adopted to describe the wave elevation and energy dissipation over submerged porous bars. In the analytical solution, no limitations on the bar number, bar size, and spacing between adjacent bars are set. The convergence of the analytical solution is satisfactory, and the correctness of the analytical solution is confirmed by an independently developed multi-domain BEM (boundary element method) solution. Numerical examples are presented to examine the reflection and transmission coefficients of porous bars, CR and Cv, respectively, for engineering applications. The calculation results show that when the sum of widths for all the porous bars is fixed, increasing the bar number can significantly improve the sheltering function of the bars. Increasing the bar height can cause more wave energy dissipation and lower CR and Cr. The spacing between adjacent bars and the spacing between the last bar and the vertical wall are the key parameters affecting CR and Ct. The proposed analytical method may be used to analyze the hydrodynamic performance of submerged porous bars in preliminary engineering designs.
基金supported by the National Science and Technology Support Program(Grant No. 2012BAC06B02)the National Natural Science Foundation (Grant No. 40971014)
文摘Debris flow often causes enormous loss to life and property,especially on alluvial fans.Engineering structures such as retention check dams are essential to reduce the damage.In hazard mitigation evaluation and planning it is of significance to determine the location,size and type of dam and the effects of damage mitigation.We present a numerical simulation method using Kanako simulator for hazard mitigation planning of debris flow disaster in Tanjutani Gully,Kyoto City,Japan.The simulations were carried out for three situations:1) the simulations of erosion,deposition,hydrograph changing and inundation when there were no mitigation measures;2) the simulations of check dams in four locations(470 m,810 m,1,210 m and 1,610 m from the upstream end) to identify the best location;3) the simulations of check dams of three types(closed,slit and grid) to analyze their effects on sediment trapping and discharge reduction.Based on the simulations,it was concluded that two closed check dams(located at 470 m and 1,610 m from the upstream end) in the channel and a drainage channel on the alluvial fan can reduce the risk on the alluvial fan to an acceptable level.
基金Supported by the National Natural Science Foundation of China (No.60374037, No.60574036), the Program for New Century Excellent Talents in University of China (NCET), and the Specialized Research Fund for the Doctoral Program of Higher Edu-cation of China (No.20050055013).
文摘A constrained decoupling (generalized predictive control) GPC algorithm is proposed for MIMO (malti-input multi-output) system. This algorithm takes account of all constraints of inputs and their increments. By solving matrix equations, the multi-step predictive decoupling controllers are realized. This algorithm need not solve Diophantine functions, and weakens the cross-coupling of the variables. At last the simulation results demon- strate the effectiveness of this proposed strategy.
基金Supported by the Major Project of National Natural Science Foundation of China (No.20409205) and National High Technology Research and Development Program of China (No.G20070040).
文摘This article deals with the design of energy efficient water utilization systems allowing operation split. Practical features such as operating flexibility and capital cost have made the number of sub operations an important parameter of the problem. By treating the direct and indirect heat transfers separately, target freshwater and energy consumption as well as the operation split conditions are first obtained. Subsequently, a mixed integer non-linear programming (MINLP) model is established for the design of water network and the heat exchanger network (HEN). The proposed systematic approach is limited to a single contaminant. Example from literature is used to illustrate the applicability of the approach.
基金Supported by the Natural Science Foundation of Henan Province (0511021700)
文摘Using a simple and reliable apparatus, the solubilities of adipic acid in water, ethanol, chloroform, n-butanol and acetone are determined by the analytic method. The results are correlated with λh equation, Apelblat equation, and UNIFAC equation. The solubilities calculated by these models are in good agreement with experi-mental data, so that the models can meet the requirements of engineering design.
基金supported in part by the US National Institutes of Health (NIH) (EB006433, EY023101, EB008389,and HL117664)the US National Science Foundation (NSF) (CBET1450956, CBET-1264782, and DGE-1069104),to Bin He
文摘In this paper, we review the current state- of-the-art techniques used for understanding the inner workings of the brain at a systems level. The neural activity that governs our everyday lives involves an intricate coordination of many processes that can be attributed to a variety of brain regions. On the surface, many of these functions can appear to be controlled by specific anatomical structures; however, in reality, numerous dynamic networks within the brain contribute to its function through an interconnected web of neuronal and synaptic pathways. The brain, in its healthy or pathological state, can therefore be best understood by taking a systems-level approach. While numerous neuroengineering technologies exist, we focus here on three major thrusts in the field of systems neuroengineering: neuroimaging, neural interfacing, and neuromodulation. Neuroimaging enables us to delineate the structural and functional organization of the brain, which is key in understanding how the neural system functions in both normal and disease states. Based on such knowledge, devices can be used either to communicate with the neural system, as in neural interface systems, or to modulate brain activity, as in neuromodulation systems. The consideration of these three fields is key to the development and application of neuro-devices. Feedback-based neuro-devices require the ability to sense neural activity (via a neuroimaging modality) through a neural interface (invasive or noninvasive) and ultimately to select a set of stimulation parameters in order to alter neural function via a neuromodulation modality. Systems neuroengineering refers to the use of engineering tools and technologies to image, decode, and modulate the brain in order to comprehend its functions and to repair its dysfunction. Interactions between these fields will help to shape the future of systems neuroengineering--to develop neurotechniques for enhancing the understanding of whole- brain function and dysfunction, and the management of neurological and mental disorders.
文摘To enhance the technology and efficiency of strata injection is a problem to be solved urgently. Because of effected by the rough and poor production conditions of mining and the changeable bearing condition of strata, the technological process of injection can not be controlled automatically.The fuzzy controlling technology of the coal strata injection is applied. This is the good way to ensure the effectiveness and efficiency of coal strata injection and to solve the current problems of production and safety in mining industry.
文摘Project-based learning theory is applied in Software English course. The aim is to develop students' professional skill. A professional skill scale of software engineer is introduced with Software English communicative skill (reading skill, writing skill, listening skill, and communicative skill), engineering thinking habit (skill of design the plan and problem-solving skill), engineering thinking skill, knowledge of software engineering, and Emotion Quotient to deal with problems (Team spirit and communicative skill and self-assessment skill). For software majors, students learn about five stages and job responsibilities in software making process.
文摘A simple and intuitive manner for solving fluid-structure interaction problem has been developed using Microsoft Excel spreadsheets. By eliminating the need of previous knowledge of any programming language, the method appears as an interesting introduction to numerical solutions of partial differential equations, due to the direct and didactic way that it is developed. Proposed procedure enables the analysis of tridimensional geometries using the finite difference method and can be extended to other differential equations or boundary conditions. The author's objective in this paper is to develop a simple and reliable preliminary method for solving acoustic fluid-structure interaction problems with application to dam-reservoir interaction phenomena and also contribute in the educational growth for undergraduate students that are beginning research in such matter.