A new method of virtual ship assembly modeling which integrates ship three-dimensional design and ship construction planning was described in this paper. A workflow model of simulation modeling based on the virtual sh...A new method of virtual ship assembly modeling which integrates ship three-dimensional design and ship construction planning was described in this paper. A workflow model of simulation modeling based on the virtual ship assembly process was also established; furthermore, a method of information transformation between the ship three-dimensional design and ship construction plan was formulated. To meet the requirements of information sharing between different systems in the ship virtual assembly, a simulation database was created by using the software engineering design method and the relational data model. With the application of this database, the information of ship three-dimensional design, construction planning, and virtual assembly can be integrated into one system. Subsequently, this new method was applied as a tool to simulate the virtual assembly of a ship, and the results guarantee its rationality and reliability.展开更多
As system of a serial of technologies and engineering activities, remanufacturing aims at restoring and rebuilding waste machinery through advanced technologies and industrialized measures under the direction of the p...As system of a serial of technologies and engineering activities, remanufacturing aims at restoring and rebuilding waste machinery through advanced technologies and industrialized measures under the direction of the product total life cycle theory. With the development of surface engineering, nano-surface engineering has been one subject of intensive studies. In addition, nano-surface engineering has become an important means for property reforming and promoting of remanufacturing parts. Many low-dimension and nano-size or nano-structure functional coatings, which can improve materials properties evidently, are deposited by new methods. In this paper, some researches about the new achievement and remanufacturing application of the nano-stmctured coatings by different nano-surface engineering technologies in our laboratory were introduced. Especially, nano-structured DLC multilayer coatings by d.c. plasma CVD, nano-composed Al2O3/Ni, SiC/Ni and Diamond/Ni coatings by brush plating, and nano-composed Al2O3/TiO2 coating by plasma spraying were introduced in detail.展开更多
Business Process Exeention Language (BPEL) is being used in various applications as the standard of workflow. As the requirerments increase to describe application processes in BPEL, BPEL documentt is getting more C...Business Process Exeention Language (BPEL) is being used in various applications as the standard of workflow. As the requirerments increase to describe application processes in BPEL, BPEL documentt is getting more Complplicated. Therefore it is difficult to describe applications in BPEL with high reliability. In order to write highly reliable BPEL document, it is necessary to check if the document is working correctly in accordance with user's intention. But it is difficult to carry out the test since BPEL engine doesn't provide a profiling function. In this paper, we suggest a BPEL system with a real-time profiling function. The suggested system consists of an integrated development environment and a BPEL nunning environment. BPEL integrated development environment has a BPEL to Java(B2J) engine, which generates and executes a Java workflow program from a BPEL document, and a converter, which converts Java Weaving XML (JWX) documents to Aspect-oriented programs. The new functions are described in JWX, which is Extensive Markup Lan-guage (XML)-based document. Since aspect-oriented programming technique provides the way to modularize main and supplemental requirements, it guarantees the low degree of coupling between BPEL workflow program and new functions by weaving them. Our approach can be extended to add other functions to provide context-aware services.展开更多
This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and eff...This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and efficient computer architectures. Based on the requirements of applications within one category,we first induce and extract some inherent computing patterns or core computing kernels from the applications.Some computing models and innovative computing architectures will then be developed for these patterns or kernels,as well as the software mapping techniques. Finally those applications which can share and utilize those computing patterns or kernels can be executed very efficiently on those novel computing architectures. We think that the proposed approach may not be achievable within the existing technology. However,we believe that it will be available in the near future. Hence,we will describe this approach from the following four aspects:multiscale environment in the world,mesoscale as a key scale,energy minimization multiscale(EMMS)paradigm and our perspective.展开更多
Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capa...Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capabilities, surface-nanopore engineering based on mesoporous silica coating has attracted great interest because of their negligible cytotoxicity and chemically active surface that can be easily modified to introduce various functional groups(e.g.,-COOH,-NH_2,-SH, etc.) via silanization, which can satisfy various requirements of conjugating biological molecules or functional nanoparticles. In addition,the nanopore-engineered biomaterials possess large surface area and high pore volume, ensuring desirable loading of therapeutic guest molecules. In this review, we comprehensively summarize the synthetic procedure/paradigm of nanopore engineering and further broad theranostic applications. Such nanopore-engineering strategy endows the biocompatible nanocomposites(e.g., Au,Ag, graphene, upconversion nanoparticles, Fe_3O_4, MXene, etc.) with versatile functional moieties, which enables the development of multifunctional nanoplatforms for multimodal diagnostic bio-imaging, photothermal therapy, photodynamic therapy,targeted drug delivery, synergetic therapy and imaging-guided therapies. Therefore, mesoporous silica-based surface-nanopore engineering integrates intriguing unique features for broadening the biomedical applications of the single mono-functional nanosystem, facilitating the development and further clinical translation of theranostic nanomedicine.展开更多
The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built a...The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built at about the same time.Up to 2007,China had more than 600 seismic isolation and about 100 energy dissipation building structures.In 2008,the huge Wenchuan earthquake hit the southwest of China,which triggered a bloom of new seismic isolation and energy dissipation structures.This paper presents the development history and representative applications of seismic isolation and energy dissipation structures in China,reviews the state-of-the-practice of Chinese design,and discusses the challenges in the future applications.Major findings are as follows:Basic design procedures are becoming standardized after more than ten years of experiences,which mainly involve determination of design earthquake forces,selection of ground motions,modeling and time-history analyses,and performance criteria.Nonlinear time-history analyses using multiple ground motions are the characteristic of the design of seismic isolation and energy dissipation structures.Regulations,standardization and quality control of devices,balance between performance and cost,comparison with real responses,and regular inspection are identified as the issues that should be improved to further promote the application of seismic isolation and energy dissipation structures in China.展开更多
基金Supported by Key National Science & Technology Specific Projects under Grant No. 2008ZX05027-005-002
文摘A new method of virtual ship assembly modeling which integrates ship three-dimensional design and ship construction planning was described in this paper. A workflow model of simulation modeling based on the virtual ship assembly process was also established; furthermore, a method of information transformation between the ship three-dimensional design and ship construction plan was formulated. To meet the requirements of information sharing between different systems in the ship virtual assembly, a simulation database was created by using the software engineering design method and the relational data model. With the application of this database, the information of ship three-dimensional design, construction planning, and virtual assembly can be integrated into one system. Subsequently, this new method was applied as a tool to simulate the virtual assembly of a ship, and the results guarantee its rationality and reliability.
基金National"973"Projects (G1999065009) andNational Natural Science Foundation of China (50075086)
文摘As system of a serial of technologies and engineering activities, remanufacturing aims at restoring and rebuilding waste machinery through advanced technologies and industrialized measures under the direction of the product total life cycle theory. With the development of surface engineering, nano-surface engineering has been one subject of intensive studies. In addition, nano-surface engineering has become an important means for property reforming and promoting of remanufacturing parts. Many low-dimension and nano-size or nano-structure functional coatings, which can improve materials properties evidently, are deposited by new methods. In this paper, some researches about the new achievement and remanufacturing application of the nano-stmctured coatings by different nano-surface engineering technologies in our laboratory were introduced. Especially, nano-structured DLC multilayer coatings by d.c. plasma CVD, nano-composed Al2O3/Ni, SiC/Ni and Diamond/Ni coatings by brush plating, and nano-composed Al2O3/TiO2 coating by plasma spraying were introduced in detail.
基金supported by MKE(The Ministry of Knowledge Economy),Koreathe ITRC support program supervised by the NIPA(NIPA-2009-(C1090-0902-0007))
文摘Business Process Exeention Language (BPEL) is being used in various applications as the standard of workflow. As the requirerments increase to describe application processes in BPEL, BPEL documentt is getting more Complplicated. Therefore it is difficult to describe applications in BPEL with high reliability. In order to write highly reliable BPEL document, it is necessary to check if the document is working correctly in accordance with user's intention. But it is difficult to carry out the test since BPEL engine doesn't provide a profiling function. In this paper, we suggest a BPEL system with a real-time profiling function. The suggested system consists of an integrated development environment and a BPEL nunning environment. BPEL integrated development environment has a BPEL to Java(B2J) engine, which generates and executes a Java workflow program from a BPEL document, and a converter, which converts Java Weaving XML (JWX) documents to Aspect-oriented programs. The new functions are described in JWX, which is Extensive Markup Lan-guage (XML)-based document. Since aspect-oriented programming technique provides the way to modularize main and supplemental requirements, it guarantees the low degree of coupling between BPEL workflow program and new functions by weaving them. Our approach can be extended to add other functions to provide context-aware services.
文摘This paper mainly discusses the multiscale computation from a chemical engineering perspective.From the application designer's perspective,we propose a new approach to investigate and develop both flexible and efficient computer architectures. Based on the requirements of applications within one category,we first induce and extract some inherent computing patterns or core computing kernels from the applications.Some computing models and innovative computing architectures will then be developed for these patterns or kernels,as well as the software mapping techniques. Finally those applications which can share and utilize those computing patterns or kernels can be executed very efficiently on those novel computing architectures. We think that the proposed approach may not be achievable within the existing technology. However,we believe that it will be available in the near future. Hence,we will describe this approach from the following four aspects:multiscale environment in the world,mesoscale as a key scale,energy minimization multiscale(EMMS)paradigm and our perspective.
基金supported by the National Key R&D Program of China (2016YFA0203700)the National Natural Science Foundation of China (51722211, 51672303, 81472284, 81672699)+1 种基金the Program of Shanghai Academic Research Leader (18XD1404300)Young Elite Scientist Sponsorship Program by CAST (2015QNRC001)
文摘Theranostic nanomedicine that integrates diagnostic and therapeutic agents into one nanosystem has gained considerable momentum in the field of cancer treatment. Among diverse strategies for achieving theranostic capabilities, surface-nanopore engineering based on mesoporous silica coating has attracted great interest because of their negligible cytotoxicity and chemically active surface that can be easily modified to introduce various functional groups(e.g.,-COOH,-NH_2,-SH, etc.) via silanization, which can satisfy various requirements of conjugating biological molecules or functional nanoparticles. In addition,the nanopore-engineered biomaterials possess large surface area and high pore volume, ensuring desirable loading of therapeutic guest molecules. In this review, we comprehensively summarize the synthetic procedure/paradigm of nanopore engineering and further broad theranostic applications. Such nanopore-engineering strategy endows the biocompatible nanocomposites(e.g., Au,Ag, graphene, upconversion nanoparticles, Fe_3O_4, MXene, etc.) with versatile functional moieties, which enables the development of multifunctional nanoplatforms for multimodal diagnostic bio-imaging, photothermal therapy, photodynamic therapy,targeted drug delivery, synergetic therapy and imaging-guided therapies. Therefore, mesoporous silica-based surface-nanopore engineering integrates intriguing unique features for broadening the biomedical applications of the single mono-functional nanosystem, facilitating the development and further clinical translation of theranostic nanomedicine.
基金supported by the National Natural Science Foundation of China (Grant No. 51178250)the Tsinghua University (Grant No.2010z01001)
文摘The concepts of seismic isolation and energy dissipation structures emerged in the early 1970s.In China,the first seismic isolation structure was finished in 1993,and the first energy dissipation structure was built at about the same time.Up to 2007,China had more than 600 seismic isolation and about 100 energy dissipation building structures.In 2008,the huge Wenchuan earthquake hit the southwest of China,which triggered a bloom of new seismic isolation and energy dissipation structures.This paper presents the development history and representative applications of seismic isolation and energy dissipation structures in China,reviews the state-of-the-practice of Chinese design,and discusses the challenges in the future applications.Major findings are as follows:Basic design procedures are becoming standardized after more than ten years of experiences,which mainly involve determination of design earthquake forces,selection of ground motions,modeling and time-history analyses,and performance criteria.Nonlinear time-history analyses using multiple ground motions are the characteristic of the design of seismic isolation and energy dissipation structures.Regulations,standardization and quality control of devices,balance between performance and cost,comparison with real responses,and regular inspection are identified as the issues that should be improved to further promote the application of seismic isolation and energy dissipation structures in China.