A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the propose...A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.展开更多
This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program A...This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.展开更多
The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at diffe...The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.展开更多
基金Supported by the National Natural Science Foundation of China(20876056,20536020)the PhD Program Fund from Ministry of Education of China(20100172110016)
文摘A novel process to recovery natural gas liquids from oil field associated gas with liquefied natural gas (LNG)cryogenic energy utilization is proposed.Compared to the current electric refrigeration process,the proposed process uses the cryogenic energy of LNG and saves 62.6%of electricity.The proposed process recovers ethane, liquid petroleum gas(propane and butane)and heavier hydrocarbons,with total recovery rate of natural gas liquids up to 96.8%.In this paper,exergy analysis and the energy utilization diagram method(EUD)are used to assess the new process and identify the key operation units with large exergy loss.The results show that exergy efficiency of the new process is 44.3%.Compared to the electric refrigeration process,exergy efficiency of the new process is improved by 16%.The proposed process has been applied and implemented in a conceptual design scheme of the cryogenic energy utilization for a 300 million tons/yr LNG receiving terminal in a northern Chinese harbor.
基金Supported by the National Natural Science Foundation of China (90210032, 50576001).
文摘This article presents an acetylene production process by partial oxidation/combustion of natural gas. The thermodynamic performance and exergy analysis in the process are investigated using the flow-sheeting program Aspen Plus. The results indicate that the most important destruction of exergy is found to occur in the reactor and water quenching scrubber, amounting to 8.23% and 10.39%, respectively, of the entire system. Based on the results of thermodynamic and exergy analysis, the acetylene reactor has been retrofitted. The improvement ratios of molar 02 to CH4 and molar CO to CN4 are 0.65 and 0.20, respectively. An improvement of the acetylene production system is proposed. Adopting the improvement operation conditions and using oil to realize the reaction heat recovery, the feedstock of natural gas is reduced by 9.88% and the exergy loss in the retrofitting process is decreased by 19.71% compared to the original process.
文摘The objective of the present study is to characterize the production of hydrogen with a sorptionenhanced steam-methane reaction process using Ca(OH)2 as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)2 as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)2 on the concentration of CO2 and H2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500℃, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.