The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides ...The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.展开更多
In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching proc...In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching processing parameters, some comparison experiments were performed to reveal the influence of etching time, etching temperature, etching liquid concentration, and sample sizes on the etching rate and surface microstructures of copper electrode. The result shows that the etching rate is decreased with increasing etching time, and is increased with increasing etching temperature. Moreover, it is found that the sample size has little influence on the etching rate. After choosing the reasonable etching liquid composition (formulation 3), the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 rain. In addition, using the alternating current impedance test of electrode-electrode for 24 h, the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the electrocardiograph (ECG) electrode, resulting from the reliable surface contact of copper electrode-electrode.展开更多
基金Supported by the National Natural Science Foundation of China(60702003)the Aviation Science Foundation(20080852011)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(20070287045)the NUAA Research Fundation(NS2010066)~~
文摘The un-coincide coordinate error in the single-axis rotating fiber optic strap-down inertial navigation system(SINS) is analyzed. Firstly, a rotating modulation technology is presented for SINS. The method provides the enhanced property of SINS when using the same-leveled inertial measurement units. Then, the rotating struc- ture modification is derived and augmented to resolve the un-modulated error-accumulated problem. As the insuf- ficient machine processing, the horizontal and the vertical errors on the machine surface are inevitable, and the in- volved coordinates are difficult to get the exact coincident. So, two major kinds of coordinate situation are stud- ied. The equivalent error models on gyro and acceleration outputs are built for each situation, and the impact is analyzed for compensation. The part of attitude and position error models caused by the built angle-rate error is established to calculate the un-eoincident impact. Considering these conditions of different gyro accuracy and mo- tion states simultaneously, numerical simulations are implemented. Results indicate that the SINS modulation ac- curacy is seriously affected by the combined factors on gyro accuracy and motion conditions.
基金Project (2011A090200123) supported by Industry-Universities-Research Cooperation Project of Guangdong Province and Ministry of Education of ChinaProject (111gpy06) supported by Fundamental Research Funds for the Central Universities,ChinaProject (101055807) supported by the Innovative Experiment Plan Project for College Students of Sun Yat-sen University,China
文摘In order to obtain bioelectrical impedance electrodes with high stability, the chemical etching process was used to fabricate the copper electrode with a series of surface microstructures. By changing the etching processing parameters, some comparison experiments were performed to reveal the influence of etching time, etching temperature, etching liquid concentration, and sample sizes on the etching rate and surface microstructures of copper electrode. The result shows that the etching rate is decreased with increasing etching time, and is increased with increasing etching temperature. Moreover, it is found that the sample size has little influence on the etching rate. After choosing the reasonable etching liquid composition (formulation 3), the copper electrode with many surface microstructures can be obtained by chemical etching process at room temperature for 20 rain. In addition, using the alternating current impedance test of electrode-electrode for 24 h, the copper electrode with a series of surface microstructures fabricated by the etching process presents a more stable impedance value compared with the electrocardiograph (ECG) electrode, resulting from the reliable surface contact of copper electrode-electrode.