Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of ...Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process.展开更多
A newly drying technology, intermittent-contact drying of veneer with flexible screen belt (ICD-fbs), was invented and used in poplar veneer drying. Productive test was carried out for validating the practical use of ...A newly drying technology, intermittent-contact drying of veneer with flexible screen belt (ICD-fbs), was invented and used in poplar veneer drying. Productive test was carried out for validating the practical use of this drying method. The test result shows that to dispose flexible screen belts on the two sides of hot board could help steam discharge remarkably. The veneer dried using ICD-fsb method had smooth and level surface, less deformation and warping, even moisture content, and high utilization rate. The time for opening hot board to discharge steam,which, early or late, is a key to obtain good drying result, was determined at the time when the core's temperature of veneer reaches 100℃ (vaporization). Using ICD-fsb method, the shrinking rates in tangent of veneer were from 1.90% to 2.26% for veneer of 0.4 mm in thickness,2.49% to 4.50% for veneer of 1 mm in thickness and 1.34% to 3.30% for veneer of 1.7 mm in thickness, which are much lower than the results obtained by other drying methods. The method of ICD-fsb offers a reliable technological guarantee for solving the deformation problem of veneer drying, especially the deformation of wood from quick-growing plantation.展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
基金Projects(5130538651305385)supported by the National Natural Science Foundation of ChinaProject(E2013203093)supported by the Natural Science Foundation of Hebei Province,China
文摘Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process.
基金This work is supported by "Xing Huo" Program of the Ministry of Agriculture, P. R. China.
文摘A newly drying technology, intermittent-contact drying of veneer with flexible screen belt (ICD-fbs), was invented and used in poplar veneer drying. Productive test was carried out for validating the practical use of this drying method. The test result shows that to dispose flexible screen belts on the two sides of hot board could help steam discharge remarkably. The veneer dried using ICD-fsb method had smooth and level surface, less deformation and warping, even moisture content, and high utilization rate. The time for opening hot board to discharge steam,which, early or late, is a key to obtain good drying result, was determined at the time when the core's temperature of veneer reaches 100℃ (vaporization). Using ICD-fsb method, the shrinking rates in tangent of veneer were from 1.90% to 2.26% for veneer of 0.4 mm in thickness,2.49% to 4.50% for veneer of 1 mm in thickness and 1.34% to 3.30% for veneer of 1.7 mm in thickness, which are much lower than the results obtained by other drying methods. The method of ICD-fsb offers a reliable technological guarantee for solving the deformation problem of veneer drying, especially the deformation of wood from quick-growing plantation.
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.