The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production ...The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.展开更多
Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the...Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.展开更多
文摘The development of unconventional resources, such as shale gas and tight sane gas, requires the integration of multi-disciplinary knowledge to resolve many engineering problems in order to achieve economic production levels. The reservoir heterogeneit3 revealed by different data sets, such as 3D seismic and microseismic data, can more full3 reflect the reservoir properties and is helpful to optimize the drilling and completioT programs. First, we predict the local stress direction and open or close status of the natura fractures in tight sand reservoirs based on seismic curvature, an attribute that reveals reservoi heterogeneity and geomechanical properties. Meanwhile, the reservoir fracture network is predicted using an ant-tracking cube and the potential fracture barriers which can affec hydraulic fracture propagation are predicted by integrating the seismic curvature attribute anc ant-tracking cube. Second, we use this information, derived from 3D seismic data, to assis in designing the fracture program and adjusting stimulation parameters. Finally, we interpre the reason why sand plugs will occur during the stimulation process by the integration of 3E seismic interpretation and microseismic imaging results, which further explain the hydraulic fracure propagation controlling factors and open or closed state of natural fractures in tigh sand reservoirs.
文摘Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.