期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于样本特征核矩阵的稀疏双线性回归 被引量:2
1
作者 邵政毅 陈秀宏 《计算机科学》 CSCD 北大核心 2021年第10期185-190,共6页
在许多实际应用中出现了大量的冗余数据,这些数据可能是高维的,这时进行回归预测将会出现过拟合的现象,并且还会出现预测精度偏低等问题。另外,大多数回归方法都是基于向量的,忽略了矩阵数据原始位置之间的关系。为此,文中提出了一种基... 在许多实际应用中出现了大量的冗余数据,这些数据可能是高维的,这时进行回归预测将会出现过拟合的现象,并且还会出现预测精度偏低等问题。另外,大多数回归方法都是基于向量的,忽略了矩阵数据原始位置之间的关系。为此,文中提出了一种基于样本特征核矩阵的稀疏双线性回归(Kernel Matrix-based Sparse Bilinear Regression,KMSBR)方法。该方法直接将数据矩阵作为输入,其是通过左右回归系数矩阵而建立的,利用样本的特征核矩阵和L 2,1范数,能够同时实现对样本及样本特征的选择,且考虑了数据的原始位置,提高了算法的性能。在若干数据集上的实验结果表明,KMSBR能有效地选择相对重要的样本和特征,从而提高算法的运行效率,且其预测精度优于已有的几种回归模型。 展开更多
关键词 特征核矩阵 线性回归 样本与特征提取 稀疏性 左右回归矩阵
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部