期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
用于指法估计的音高差数据增强方法
1
作者 关欣 赵昊月 李锵 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2023年第2期200-206,共7页
指法估计模型的性能除了与自身的结构有关,数据本身的数量和质量也是其重要影响因素.然而,乐谱指法的标注需要标注者有一定演奏经验,且标注过程费时费力,导致现有乐谱-指法数据集稀少,且增速缓慢.为解决数据集样本数量有限带来的模型表... 指法估计模型的性能除了与自身的结构有关,数据本身的数量和质量也是其重要影响因素.然而,乐谱指法的标注需要标注者有一定演奏经验,且标注过程费时费力,导致现有乐谱-指法数据集稀少,且增速缓慢.为解决数据集样本数量有限带来的模型表现不佳、参数过拟合等问题,提出了两种针对键盘类乐器乐谱音高差指法数据的数据增强方法.通过分析乐谱-指法数据的统计特征,一方面结合键盘类乐器和指法的映射关系,提出了基于隐马尔可夫模型的数据增强方法,另一方面结合双手手部生理学特性,提出了左右手镜像变换的数据增强方法.将本文提出的两种增强方法生成的数据加入训练集,经过与人工确定指法思路相近的双向长短期记忆网络学习后,一般匹配率提高了2.24%,最高匹配率提升了3.73%.结果表明数据增强有助于模型更好地学习音指特征.将基于隐马尔可夫模型的数据增强方法生成的“再采样数据集”和基于手部生理学特性生成的“左右手镜像变换数据集”分别加入训练,对指法估计结果中单音和复音占比75%以上的乐谱匹配率分别进行统计,结果表明再采样数据可以增强数据集本身的统计特征,左右手镜像变换数据可以弥补一些数据集原先没有的音指规律,说明了两种数据增强方法在键盘乐器指法估计任务中的有效性. 展开更多
关键词 指法 数据增强 统计学习 左右手变换
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部