期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用于指法估计的音高差数据增强方法
1
作者
关欣
赵昊月
李锵
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2023年第2期200-206,共7页
指法估计模型的性能除了与自身的结构有关,数据本身的数量和质量也是其重要影响因素.然而,乐谱指法的标注需要标注者有一定演奏经验,且标注过程费时费力,导致现有乐谱-指法数据集稀少,且增速缓慢.为解决数据集样本数量有限带来的模型表...
指法估计模型的性能除了与自身的结构有关,数据本身的数量和质量也是其重要影响因素.然而,乐谱指法的标注需要标注者有一定演奏经验,且标注过程费时费力,导致现有乐谱-指法数据集稀少,且增速缓慢.为解决数据集样本数量有限带来的模型表现不佳、参数过拟合等问题,提出了两种针对键盘类乐器乐谱音高差指法数据的数据增强方法.通过分析乐谱-指法数据的统计特征,一方面结合键盘类乐器和指法的映射关系,提出了基于隐马尔可夫模型的数据增强方法,另一方面结合双手手部生理学特性,提出了左右手镜像变换的数据增强方法.将本文提出的两种增强方法生成的数据加入训练集,经过与人工确定指法思路相近的双向长短期记忆网络学习后,一般匹配率提高了2.24%,最高匹配率提升了3.73%.结果表明数据增强有助于模型更好地学习音指特征.将基于隐马尔可夫模型的数据增强方法生成的“再采样数据集”和基于手部生理学特性生成的“左右手镜像变换数据集”分别加入训练,对指法估计结果中单音和复音占比75%以上的乐谱匹配率分别进行统计,结果表明再采样数据可以增强数据集本身的统计特征,左右手镜像变换数据可以弥补一些数据集原先没有的音指规律,说明了两种数据增强方法在键盘乐器指法估计任务中的有效性.
展开更多
关键词
指法
数据增强
统计学习
左右手变换
下载PDF
职称材料
题名
用于指法估计的音高差数据增强方法
1
作者
关欣
赵昊月
李锵
机构
天津大学微电子学院
出处
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2023年第2期200-206,共7页
基金
国家自然科学基金资助项目(61471263)
天津市自然科学基金资助项目(16JCZDJC31100)。
文摘
指法估计模型的性能除了与自身的结构有关,数据本身的数量和质量也是其重要影响因素.然而,乐谱指法的标注需要标注者有一定演奏经验,且标注过程费时费力,导致现有乐谱-指法数据集稀少,且增速缓慢.为解决数据集样本数量有限带来的模型表现不佳、参数过拟合等问题,提出了两种针对键盘类乐器乐谱音高差指法数据的数据增强方法.通过分析乐谱-指法数据的统计特征,一方面结合键盘类乐器和指法的映射关系,提出了基于隐马尔可夫模型的数据增强方法,另一方面结合双手手部生理学特性,提出了左右手镜像变换的数据增强方法.将本文提出的两种增强方法生成的数据加入训练集,经过与人工确定指法思路相近的双向长短期记忆网络学习后,一般匹配率提高了2.24%,最高匹配率提升了3.73%.结果表明数据增强有助于模型更好地学习音指特征.将基于隐马尔可夫模型的数据增强方法生成的“再采样数据集”和基于手部生理学特性生成的“左右手镜像变换数据集”分别加入训练,对指法估计结果中单音和复音占比75%以上的乐谱匹配率分别进行统计,结果表明再采样数据可以增强数据集本身的统计特征,左右手镜像变换数据可以弥补一些数据集原先没有的音指规律,说明了两种数据增强方法在键盘乐器指法估计任务中的有效性.
关键词
指法
数据增强
统计学习
左右手变换
Keywords
fingering
data augmentation
statistical learning
physical transformation of hands
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用于指法估计的音高差数据增强方法
关欣
赵昊月
李锵
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部