We propose two simple ansaetze that allow us to obtain different analytical solutions for two generalizeal versions of the nonlinear Schrodinger equation, such as the averaged dispersive-managed fiber system equation ...We propose two simple ansaetze that allow us to obtain different analytical solutions for two generalizeal versions of the nonlinear Schrodinger equation, such as the averaged dispersive-managed fiber system equation and the extended nonlinear Schrodinger equation which describe the femtosecond pulse propagation in monomode optical fiber. Among these solutions we can find solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media.展开更多
The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability ...The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability of the scheme.Through the stability analyzing for the scheme,it was shown that the stability of the finite difference scheme with the incremental unknowns is improved when compared with the stability of the corresponding classic difference scheme.展开更多
基金The project supported by National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province of China
文摘We propose two simple ansaetze that allow us to obtain different analytical solutions for two generalizeal versions of the nonlinear Schrodinger equation, such as the averaged dispersive-managed fiber system equation and the extended nonlinear Schrodinger equation which describe the femtosecond pulse propagation in monomode optical fiber. Among these solutions we can find solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media.
文摘The main purpose of this paper is to set up the finite difference scheme with incremental unknowns for the nonlinear differential equation by means of introducing incremental unknowns method and discuss the stability of the scheme.Through the stability analyzing for the scheme,it was shown that the stability of the finite difference scheme with the incremental unknowns is improved when compared with the stability of the corresponding classic difference scheme.