A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively....A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively.In this method,the GNSS signal is first decomposed into several intrinsic mode functions(IMFs)and a residual through EEMD.Then,the IMFs and residual are classified into noise terms,mixed terms,and useful terms according to a combined classification criterion.Finally,the mixed term denoised by wavelet and the useful term are reconstructed to obtain the multipath error and thus enable an error correction model to be built.The measurement data provided by the Curtin GNSS Research Center were used for processing and analysis.Results show that the proposed method can separate multipath error from GNSS data to a great extent,thereby effectively addressing the defects of EEMD and wavelet methods on multipath error weakening.The error correction model established with the separated multipath error has a higher accuracy and provides a certain reference value for research on related signal processing.展开更多
China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravi...China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravity measurement system consists of a strap-down inertial navigation system and a differential global positioning system (DGPS). In April 2010, a flight test was carried out in Shandong Province of China to test the accuracy of this system. The test was designed to assess the re- peatability and accuracy of the system. Two repeated flights and six grid flights were made. The flying altitude was about 400 m. The average flying speed was about 60 m/s, which corresponds to a spatial resolution of 4.8 km when using 160-s cutoff low-pass filter. This paper describes the data processing of the system. The evaluation of the internal precision is based on repeated flights and differences in crossover points. Gravity results in this test from the repeated flight lines show that the re- peatability of the repeat lines is 1.6 mGal with a spatial resolution of 4.8 kin, and the internal precision of grid flight data is 3.2 mGal with a spatial resolution of 4.8 km. There are some systematic errors in the gravity results, which can be modeled using trigonometric function. After the systematic errors are compensated, the precision of grid flight data can be better than 1 mGal.展开更多
Care should be taken to minimize adverse impact of receiver differential code biases(DCBs) on global navigation satellite system(GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the int...Care should be taken to minimize adverse impact of receiver differential code biases(DCBs) on global navigation satellite system(GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the intrinsic characteristics of receiver DCBs,preferably in the context of new-generation GNSS. In this contribution, we present a method that enables time-wise retrieval of between-receiver DCBs(BR-DCBs) from dualfrequency, code-only measurements collected by a pair of co-located receivers. This method is applicable to the US GPS as well as to a new set of GNSS constellations including the Chinese Bei Dou, the European Galileo and the Japanese QZSS. With the use of this method, we determine the multi-GNSS BR-DCB time-wise estimates covering a time period of up to 2 years(January 2013–March 2015) with a 30-s time resolution for five receiverpairs(four zero and one short baselines). For the BR-DCB time-wise estimates pertaining to an arbitrary receiver-pair and constellation, we demonstrate their promising intraday stability by means of statistical hypothesis testing. We also find that the Bei Dou BR-DCB daily weighted average(DWA) estimates show a dependence on satellite type, in particular for receiver-pairs of mixed types. Finally, we demonstrate that long-term variability in BR-DCB DWA estimates can be closely associated with hardware temperature variations inside the receivers.展开更多
基金The National Natural Science Foundation of China(No.41974030)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0150).
文摘A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively.In this method,the GNSS signal is first decomposed into several intrinsic mode functions(IMFs)and a residual through EEMD.Then,the IMFs and residual are classified into noise terms,mixed terms,and useful terms according to a combined classification criterion.Finally,the mixed term denoised by wavelet and the useful term are reconstructed to obtain the multipath error and thus enable an error correction model to be built.The measurement data provided by the Curtin GNSS Research Center were used for processing and analysis.Results show that the proposed method can separate multipath error from GNSS data to a great extent,thereby effectively addressing the defects of EEMD and wavelet methods on multipath error weakening.The error correction model established with the separated multipath error has a higher accuracy and provides a certain reference value for research on related signal processing.
基金supported by the National High-Tech Research&Development Program of China(Grant No.2006AA06A202)the Youth Innovation Foundation of China Aero Geophysical Survey&Remote Sensing Center for Land and Resources(Grant No.2010YFL05)
文摘China has developed an airborne gravimetry system based on SINS/DGPS named SGA-WZ, the first system in which a strap- down inertial navigation system (SINS) has been used for airborne gravimetry in China. This gravity measurement system consists of a strap-down inertial navigation system and a differential global positioning system (DGPS). In April 2010, a flight test was carried out in Shandong Province of China to test the accuracy of this system. The test was designed to assess the re- peatability and accuracy of the system. Two repeated flights and six grid flights were made. The flying altitude was about 400 m. The average flying speed was about 60 m/s, which corresponds to a spatial resolution of 4.8 km when using 160-s cutoff low-pass filter. This paper describes the data processing of the system. The evaluation of the internal precision is based on repeated flights and differences in crossover points. Gravity results in this test from the repeated flight lines show that the re- peatability of the repeat lines is 1.6 mGal with a spatial resolution of 4.8 kin, and the internal precision of grid flight data is 3.2 mGal with a spatial resolution of 4.8 km. There are some systematic errors in the gravity results, which can be modeled using trigonometric function. After the systematic errors are compensated, the precision of grid flight data can be better than 1 mGal.
基金funded by the Chinese Academy of Sciences(CAS)and the Royal Netherlands Academy of Arts and Sciences(KNAW)joint research project‘‘Compass,Galileo and GPS for improved ionosphere modelling.’’The second author is the recipient of an Australian Research Council(ARC)Federation Fellowship(NO.FF0883188)
文摘Care should be taken to minimize adverse impact of receiver differential code biases(DCBs) on global navigation satellite system(GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the intrinsic characteristics of receiver DCBs,preferably in the context of new-generation GNSS. In this contribution, we present a method that enables time-wise retrieval of between-receiver DCBs(BR-DCBs) from dualfrequency, code-only measurements collected by a pair of co-located receivers. This method is applicable to the US GPS as well as to a new set of GNSS constellations including the Chinese Bei Dou, the European Galileo and the Japanese QZSS. With the use of this method, we determine the multi-GNSS BR-DCB time-wise estimates covering a time period of up to 2 years(January 2013–March 2015) with a 30-s time resolution for five receiverpairs(four zero and one short baselines). For the BR-DCB time-wise estimates pertaining to an arbitrary receiver-pair and constellation, we demonstrate their promising intraday stability by means of statistical hypothesis testing. We also find that the Bei Dou BR-DCB daily weighted average(DWA) estimates show a dependence on satellite type, in particular for receiver-pairs of mixed types. Finally, we demonstrate that long-term variability in BR-DCB DWA estimates can be closely associated with hardware temperature variations inside the receivers.