The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the ...The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.展开更多
In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transform...In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transformed coordinate system is derived. The wave field is modeled using the finite-difference method in the transformed coordinate system. The model calculation shows that this method is able to model the seismic wave field with fluctuating surface topography and achieve good results. Finally, the energy curves of the direct and reflected waves are analyzed to show that surface topography has a great influence on the seismic wave's dynamic properties.展开更多
Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound so...Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.展开更多
The truncation error of improved Cotes formula is presented in this paper. It also displays an analysis on convergence order of improved Cotes formula. Examples of numerical calculation is given in the end.
The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,n...The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program.Based on the monotonic loading tests on saturated sand after liquefaction,the liquefaction lateral deformation of the site where group piles are located was predicted.The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the fmite difference program mentioned above,and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained.The applicability of the program was preliminarily verified.The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile's top when the pile's top is embedded.The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake,so in the pile foundation design,more than the superstructure's dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected.展开更多
To predict the heat diffusion in a given region over time, it is often necessary to find the numerical solution for heat equation. However, the computational domain of classical numerical methods are limited to fiat s...To predict the heat diffusion in a given region over time, it is often necessary to find the numerical solution for heat equation. However, the computational domain of classical numerical methods are limited to fiat spacetime. With the techniques of discrete differential calculus, we propose two unconditional stable numerical schemes for simulation heat equation on space manifold and time. The analysis of their stability and error is accomplished by the use of maximum principle.展开更多
Optical waveguide is the main element in integrated optics. Therefore many numerical methods are used on these elements of integrated optics. Simulation response of an optical slab waveguide used in integrated optics ...Optical waveguide is the main element in integrated optics. Therefore many numerical methods are used on these elements of integrated optics. Simulation response of an optical slab waveguide used in integrated optics needs such numerical methods. These methods must be precise and useful in terms of memory capacity and time duration. In this paper, we study basic analytical and finite difference methods to determine the effective refractive index of AIGaAs-GaAs slab waveguide. Also, appropriate effective refractive index value is obtained with respect to number of grid points and number of matrix sizes. Finally, the validity of the obtained values by both methods is compared to using waveguide type.展开更多
To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed a...To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.展开更多
The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integra...The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.展开更多
Elastic waves in the seabed generated by low-frequency noise radiating from ships are known as ship seismic waves and can be used to detect and identify ships. To obtain the propagation characteristics of ship seismic...Elastic waves in the seabed generated by low-frequency noise radiating from ships are known as ship seismic waves and can be used to detect and identify ships. To obtain the propagation characteristics of ship seismic waves, an algorithm for calculating Seismic waves at the seafloor is presented based on the staggered-grid finite difference method. The accuracy of the algorithm was tested by comparison with analytical solutions. Numerical simulation of seismic waves generated by a low-frequency point sotmd source in a typical shallow sea environment was carried out. Using various source frequencies and locations in the numerical simulation, we show that the seismic waves in the near field are composed mostly of transmitted S-waves and interface waves while transmitted P-waves are weak near the seafloor. However, in the far field, the wave components of the seismic wave are mainly normal modes and interface waves, with the latter being relatively strong in the waveforms, As the source frequency decreases, the normal modes become smaller and the interface waves dominate the time series of the seismic waves.展开更多
To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method a...To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.展开更多
The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equatio...The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.展开更多
Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this pap...Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this paper we consider a numerical solution of the elliptic homogenization problem for the case of rapidly varying tensor or boundary conditions. The method makes use of an adaptive finite element method to correctly capture the rapid change in the tensor or boundary condition. In the numerical experiments we vary the mesh size and do a posteriori error analysis on test problems.展开更多
The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of thelevel set equation, which is coupled with the theory of detonation shock dynamics (DSD) descr...The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of thelevel set equation, which is coupled with the theory of detonation shock dynamics (DSD) describing the propagation of thedetonation shock front. The numerical results of a rate-stick problem, a converging channel problem and an arc channel prob-lem for specified boundaries show that GFDM is effective on solving the level set equation in the irregular geometrical domain.The arrival time and the normal velocity distribution of the detonation shock front of these problems can then be obtainedconveniently with this method. The numerical results also confirm that when there is a curvature effect, the theory of DSDmust be considered for the propagation of detonation shock surface, while classic Huygens construction is not suitable anymore.展开更多
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decom...Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.展开更多
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the n...In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.展开更多
文摘The high order compact d if ference method is developed for solving the perturbation equations based on Navi er Stokes equations, and is used in studying complex evolution processes from w all negative pulse to the turbulent coherent structure in the channel flow. Th is method contains three dimensional coupling difference scheme with high accur acy and high resolution, and the high order time splitting methods. Compared with the general spectral method, the method can be used to research turbule nt coherent structure under more general boundary conditions and in flow domains . In this paper, the generation and evolution of the turbulent coherent structur es ind uced by wall pulse in the channel flow are simulated, and the basic characterist ics and rules of the turbulent coherent structure are shown. Computational r esults indicate that a wall negative pulse is more convenient than the resonant three wave model.
基金This research is sponsored by the Scientific Research Project of the China Geological Survey "Basic Theory, Special Collection and Special Process Method Research on Metal Mineral Seismic Exploration" (Project Number: 2000201 0002146).
文摘In order to model the seismic wave field with surface topography, we present a method of transforming curved grids into rectangular grids in two different coordinate systems. Then the 3D wave equation in the transformed coordinate system is derived. The wave field is modeled using the finite-difference method in the transformed coordinate system. The model calculation shows that this method is able to model the seismic wave field with fluctuating surface topography and achieve good results. Finally, the energy curves of the direct and reflected waves are analyzed to show that surface topography has a great influence on the seismic wave's dynamic properties.
文摘Array calibration is important in engineering practice. In this paper, fast calibration methods for a ULA's gain and phase errors both in far and near fields are proposed. In the far field, using a single sound source without exact orientation, this method horizontally rotates the array exactly once, performs eigen value decomposition for the covariance matrix of received data, then computes the gain and phase error according to the formulas. In the near field, using the same single sound source, it is necessary to rotate the array horizontally at most three times, build equations according to geometric relations, then solve them. Using the formula proposed in this paper, spherical waves are modified into plane waves. Then eigen values decomposition is performed. These two calibration methods were shown to be valid by simulation and are fast, accurate and easy to use. Finally, an analysis of factors influencing estimation precision is given.
文摘The truncation error of improved Cotes formula is presented in this paper. It also displays an analysis on convergence order of improved Cotes formula. Examples of numerical calculation is given in the end.
基金Project(51109208)supported by the National Natural Science Foundation of ChinaProject(2013M531688)supported by the Postdoctoral Science Foundation of China+1 种基金Project(Z012009)supported by the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Institute of Rock and Soil Mechanics,Chinese Academy of Sciences)Project(CKSF2012054)supported by the Foundation of Changjiang River Scientific Research Institute,China
文摘The pile-soil system interaction computational model in liquefaction-induced lateral spreading ground was established by the finite difference numerical method.Considering an elastic-plastic subgrade reaction method,numerical methods involving finite difference approach of pile in liquefaction-induced lateral spreading ground were derived and implemented into a finite difference program.Based on the monotonic loading tests on saturated sand after liquefaction,the liquefaction lateral deformation of the site where group piles are located was predicted.The effects of lateral ground deformation after liquefaction on a group of pile foundations were studied using the fmite difference program mentioned above,and the failure mechanism of group piles in liquefaction-induced lateral spreading ground was obtained.The applicability of the program was preliminarily verified.The results show that the bending moments at the interfaces between liquefied and non-liquefied soil layers are larger than those at the pile's top when the pile's top is embedded.The value of the additional static bending moment is larger than the peak dynamic bending moment during the earthquake,so in the pile foundation design,more than the superstructure's dynamics should be considered and the effect of lateral ground deformation on pile foundations cannot be neglected.
基金Supported by China Postdoctoral Science Foundation under Grant No.20090460102
文摘To predict the heat diffusion in a given region over time, it is often necessary to find the numerical solution for heat equation. However, the computational domain of classical numerical methods are limited to fiat spacetime. With the techniques of discrete differential calculus, we propose two unconditional stable numerical schemes for simulation heat equation on space manifold and time. The analysis of their stability and error is accomplished by the use of maximum principle.
文摘Optical waveguide is the main element in integrated optics. Therefore many numerical methods are used on these elements of integrated optics. Simulation response of an optical slab waveguide used in integrated optics needs such numerical methods. These methods must be precise and useful in terms of memory capacity and time duration. In this paper, we study basic analytical and finite difference methods to determine the effective refractive index of AIGaAs-GaAs slab waveguide. Also, appropriate effective refractive index value is obtained with respect to number of grid points and number of matrix sizes. Finally, the validity of the obtained values by both methods is compared to using waveguide type.
基金Project(51278216) supported by the National Natural Science Foundation of ChinaProject(20091341) supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject(HF-08-01-2011-240) supported by the Graduates’ Innovation Fund of Huazhong University of Science and Technology,China
文摘To overcome the deficiencies of conventional geosynthetic-reinforced and pile-supported (GRPS) embankment, a new improvement technique, fixed geosynthetic technique of GRPS embankment (FGT embankment), was developed and introduced. Based on the discussion about the load transfer mechanism of FGT embankment, a simplified check method of the requirement of geosynthetic tensile strength and a mechanical model of the FGT embankment were proposed. Two conditions, the pile cap and pile beam conditions are considered in the mechanical model. The finite difference method is used to solve the mechanical model owing to the complexity of the differential equations and the soil strata. Then, the numerical procedure is programmed. Finally, a field test is conducted to verify the mechanical model and the calculated results are in good agreement with field measured data.
文摘The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.
基金Supported by the National Natural Science Foundation of China(Nos.51179195,51679248)the National Defense Foundation of China(No.513030203-02)
文摘Elastic waves in the seabed generated by low-frequency noise radiating from ships are known as ship seismic waves and can be used to detect and identify ships. To obtain the propagation characteristics of ship seismic waves, an algorithm for calculating Seismic waves at the seafloor is presented based on the staggered-grid finite difference method. The accuracy of the algorithm was tested by comparison with analytical solutions. Numerical simulation of seismic waves generated by a low-frequency point sotmd source in a typical shallow sea environment was carried out. Using various source frequencies and locations in the numerical simulation, we show that the seismic waves in the near field are composed mostly of transmitted S-waves and interface waves while transmitted P-waves are weak near the seafloor. However, in the far field, the wave components of the seismic wave are mainly normal modes and interface waves, with the latter being relatively strong in the waveforms, As the source frequency decreases, the normal modes become smaller and the interface waves dominate the time series of the seismic waves.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2007AA041901 )the National Natural Science Foundation of China ( No. 50775117 )+1 种基金the National S&T Major Project ( No. 2009XZ04001-025 )the Technology Innovation Fund of AVIC ( No.2009E 13224 )
文摘To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.
文摘The damage identification is made by the numerical simulation analysis of a five-storey-and-two-span RC frame structure, using improved and unimproved direct analytical method respectively; and the fundamental equations were solved by the minimal least square method (viz. general inverse method). It demonstrates that the feasibility and the accuracy of the present approach were impoved significantly, compared with the result of unimproved damage identification.
文摘Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this paper we consider a numerical solution of the elliptic homogenization problem for the case of rapidly varying tensor or boundary conditions. The method makes use of an adaptive finite element method to correctly capture the rapid change in the tensor or boundary condition. In the numerical experiments we vary the mesh size and do a posteriori error analysis on test problems.
基金supported by the National Natural Science Foundation of China (Grant No. 11002029)
文摘The generalized finite difference method (GFDM) used for irregular grids is first introduced into the numerical study of thelevel set equation, which is coupled with the theory of detonation shock dynamics (DSD) describing the propagation of thedetonation shock front. The numerical results of a rate-stick problem, a converging channel problem and an arc channel prob-lem for specified boundaries show that GFDM is effective on solving the level set equation in the irregular geometrical domain.The arrival time and the normal velocity distribution of the detonation shock front of these problems can then be obtainedconveniently with this method. The numerical results also confirm that when there is a curvature effect, the theory of DSDmust be considered for the propagation of detonation shock surface, while classic Huygens construction is not suitable anymore.
基金supported by National Natural Science Foundation of China (GrantNos.10931002,10911120386)
文摘Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.
基金supported by the Hong Kong General Research Fund (Grant Nos. 202112, 15302214 and 509213)National Natural Science Foundation of China/Research Grants Council Joint Research Scheme (Grant Nos. N HKBU204/12 and 11261160486)+1 种基金National Natural Science Foundation of China (Grant No. 11471046)the Ministry of Education Program for New Century Excellent Talents Project (Grant No. NCET-12-0053)
文摘In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation, is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional.For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.