Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety p...Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety problems in cryogenic air separation.In order to improve the uniformity of the flow distribution along the radial direction in the adsorber,a differential equation is derived through pressure drop analysis in the Z-flow type radial adsorber with a cone in the middle of the central pipe.The differential equation determines the ideal cross-sectional radii of the cone along the axis.The result shows that the cross-sectional radius of the cone should gradually decrease from 0.3 m to zero along the axis to ensure that the process air is distributed uniformly in the Z-flow type radial flow adsorber and the shape of the cone is a little convex.The flow distribution without the cone in the central pipe is compared under different bed porosities.It is demonstrated that the proposed differential equation can provide theoretical support for designing Z-flow type radial flow adsorbers.展开更多
The aim of this study was to assess the runoff amount from a catchment characterized by diverse land uses by using the Soil Conservation Service Curve Number(SCS-CN) method based on Curve Number(CN) defined for domina...The aim of this study was to assess the runoff amount from a catchment characterized by diverse land uses by using the Soil Conservation Service Curve Number(SCS-CN) method based on Curve Number(CN) defined for dominant homogeneous elementary sub-regions.The calculations employed the SCS-CN method,involving the division of the catchment in two homogeneous parts and determining the runoff amount.The obtained results were compared with the results provided by three other CN determination methods,i.e.the Hawkins function,the kinetics equation,and a complementary error function peak.The catchment is located in a mountain dominated by forest land cover.Empirical CN-Precipitation(CN_(emp)-P) data pairs were analyzed using the mentioned methods,and the highest quality score was achieved from model 1.The results suggest that dividing a catchment into two homogeneous areas and determining their separate CN parameters,used later on to calculate the runoff by means of the presented approach,could be an alternative to the standard methods.The described method is relatively easy,and as it does not require an adoption of numerous parameters,and it can be employed for designing hydraulic facilities.展开更多
The research is to design a differential pumping system not only to achieve the pressure transition with a large throughput,but also to achieve a clean system without back-oil.In the paper,the pressure in differential...The research is to design a differential pumping system not only to achieve the pressure transition with a large throughput,but also to achieve a clean system without back-oil.In the paper,the pressure in differential stages is calculated;the differential pumping system design and equipment choice are introduced;the tests of Molecular/Booster Pump(MBP),a new kind of molecular-drag pump with large throughout and clean vacuum are described and the system experimental result and analysis are presented.展开更多
Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow...Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measure- ment gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=SD-10D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.展开更多
The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear parti...The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear partial differential equations.For better control purpose,the finite difference method is used to discretize the Saint-Venant equations to form the state space model of channel system.To avoid calculation divergence and improve control stability,balanced model reduction together with poles placement procedure is proposed to develop the control scheme.The entire process to obtain this scheme is described in this paper,important application issue is considered as well.Experimental results show the adopted techniques are properly used in the control scheme design,and the system is able to drive the discharge to the demanded set point or maintain it around a reasonable range even if comes across big withdrawals.展开更多
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51176164)
文摘Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety problems in cryogenic air separation.In order to improve the uniformity of the flow distribution along the radial direction in the adsorber,a differential equation is derived through pressure drop analysis in the Z-flow type radial adsorber with a cone in the middle of the central pipe.The differential equation determines the ideal cross-sectional radii of the cone along the axis.The result shows that the cross-sectional radius of the cone should gradually decrease from 0.3 m to zero along the axis to ensure that the process air is distributed uniformly in the Z-flow type radial flow adsorber and the shape of the cone is a little convex.The flow distribution without the cone in the central pipe is compared under different bed porosities.It is demonstrated that the proposed differential equation can provide theoretical support for designing Z-flow type radial flow adsorbers.
基金Dean of the Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, for financial support
文摘The aim of this study was to assess the runoff amount from a catchment characterized by diverse land uses by using the Soil Conservation Service Curve Number(SCS-CN) method based on Curve Number(CN) defined for dominant homogeneous elementary sub-regions.The calculations employed the SCS-CN method,involving the division of the catchment in two homogeneous parts and determining the runoff amount.The obtained results were compared with the results provided by three other CN determination methods,i.e.the Hawkins function,the kinetics equation,and a complementary error function peak.The catchment is located in a mountain dominated by forest land cover.Empirical CN-Precipitation(CN_(emp)-P) data pairs were analyzed using the mentioned methods,and the highest quality score was achieved from model 1.The results suggest that dividing a catchment into two homogeneous areas and determining their separate CN parameters,used later on to calculate the runoff by means of the presented approach,could be an alternative to the standard methods.The described method is relatively easy,and as it does not require an adoption of numerous parameters,and it can be employed for designing hydraulic facilities.
文摘The research is to design a differential pumping system not only to achieve the pressure transition with a large throughput,but also to achieve a clean system without back-oil.In the paper,the pressure in differential stages is calculated;the differential pumping system design and equipment choice are introduced;the tests of Molecular/Booster Pump(MBP),a new kind of molecular-drag pump with large throughout and clean vacuum are described and the system experimental result and analysis are presented.
基金supported by the National Natural Science Foundation of China (Grant No. 30970822)
文摘Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measure- ment gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=SD-10D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.
基金supported by the National Key Basic Research Program of China ("973" Progject) (Grant No. 2007CB714100)
文摘The particular challenges of modeling control systems for the middle route of the south-to-north water transfer project are illustrated.Open channel dynamics are approximated by well-known Saint-Venant nonlinear partial differential equations.For better control purpose,the finite difference method is used to discretize the Saint-Venant equations to form the state space model of channel system.To avoid calculation divergence and improve control stability,balanced model reduction together with poles placement procedure is proposed to develop the control scheme.The entire process to obtain this scheme is described in this paper,important application issue is considered as well.Experimental results show the adopted techniques are properly used in the control scheme design,and the system is able to drive the discharge to the demanded set point or maintain it around a reasonable range even if comes across big withdrawals.