Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete en...Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.展开更多
Support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, was proposed to establish a model to predict the thermal conductivity of polymer-based composites under d...Support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, was proposed to establish a model to predict the thermal conductivity of polymer-based composites under different mass fractions of fillers (mass fraction of polyethylene (PE) and mass fraction of polystyrene (PS)). The prediction performance of SVR was compared with those of other two theoretical models of spherical packing and flake packing. The result demonstrated that the estimated errors by leave-one-out cross validation (LOOCV) test of SVR models, such as mean absolute error (MAE) and mean absolute percentage error (MAPE), all are smaller than those achieved by the two theoretical models via applying identical samples. It is revealed that the generalization ability of SVR model is superior to those of the two theoretical models. This study suggests that SVR can be used as a powerful approach to foresee the thermal property of polymer-based composites under different mass fractions of polyethylene and polystyrene fillers.展开更多
基金Project supported by the National High-Tech R&D Program(863)of China(No.2014AA041501)
文摘Targeting the mode-mixing problem of intrinsic time-scale decomposition (ITD) and the parameter optimization problem of least-square support vector machine (LSSVM), we propose a novel approach based on complete ensemble intrinsic time-scale decomposition (CEITD) and LSSVM optimized by the hybrid differential evolution and particle swarm optimization (HDEPSO) algorithm for the identification of the fault in a diesel engine. The approach consists mainly of three stages. First, to solve the mode-mixing problem of ITD, a novel CEITD method is proposed. Then the CEITD method is used to decompose the nonstationary vibration signal into a set of stationary proper rotation components (PRCs) and a residual signal. Second, three typical types of time-frequency features, namely singular values, PRCs energy and energy entropy, and AR model parameters, are extracted from the first several PRCs and used as the fault feature vectors. Finally, a HDEPSO algorithm is proposed for the parameter optimization of LSSVM, and the fault diagnosis results can be obtained by inputting the fault feature vectors into the HDEPSO-LSSVM classifier. Simulation and experimental results demonstrate that the proposed fault diagnosis approach can overcome the mode-mixing problem of ITD and accurately identify the fault patterns of diesel engines.
基金supported by the Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0903)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, China (Grant No. 2008101-1)+2 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. CDJXS10101107, CDJXS10100037)the Natural Science Foundation of Chongqing, China (Grant No. CSTC2006BB5240)the Innovative Talent Training Project of the Third Stage of "211 Project", Chongqing University (Grant No. S-09109)
文摘Support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization, was proposed to establish a model to predict the thermal conductivity of polymer-based composites under different mass fractions of fillers (mass fraction of polyethylene (PE) and mass fraction of polystyrene (PS)). The prediction performance of SVR was compared with those of other two theoretical models of spherical packing and flake packing. The result demonstrated that the estimated errors by leave-one-out cross validation (LOOCV) test of SVR models, such as mean absolute error (MAE) and mean absolute percentage error (MAPE), all are smaller than those achieved by the two theoretical models via applying identical samples. It is revealed that the generalization ability of SVR model is superior to those of the two theoretical models. This study suggests that SVR can be used as a powerful approach to foresee the thermal property of polymer-based composites under different mass fractions of polyethylene and polystyrene fillers.