In this article, we propose a new general approach to constructing asymmetrical orthogonal arrays, namely the Kronecker sum. It is interesting since a lot of new mixed-level orthogonal arrays can be obtained by this m...In this article, we propose a new general approach to constructing asymmetrical orthogonal arrays, namely the Kronecker sum. It is interesting since a lot of new mixed-level orthogonal arrays can be obtained by this method.展开更多
In this paper, we propose a construction of functions with low differential uniformity based on known perfect nonlinear functions over finite fields of odd characteristic. For an odd prime power q, it is proved that t...In this paper, we propose a construction of functions with low differential uniformity based on known perfect nonlinear functions over finite fields of odd characteristic. For an odd prime power q, it is proved that the proposed functions over the finite field Fq are permutations if and only if q≡3(mod 4).展开更多
基金The work was supported by Visiting Scholar Foundation of Key Lab in Universityby Natural Science Foundation No.10571045,No.0224370051(Henan)and No.0211063100(Henan)in China.
文摘In this article, we propose a new general approach to constructing asymmetrical orthogonal arrays, namely the Kronecker sum. It is interesting since a lot of new mixed-level orthogonal arrays can be obtained by this method.
基金supported by National Natural Science Foundation of China(Grant Nos.61070172,10990011 and 61170257)the External Science and Technology Cooperation Program of Hubei Province(Grant No.2012IHA01402)+1 种基金National Key Basic Research Program of China(Grant No.2013CB834203)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA06010702)
文摘In this paper, we propose a construction of functions with low differential uniformity based on known perfect nonlinear functions over finite fields of odd characteristic. For an odd prime power q, it is proved that the proposed functions over the finite field Fq are permutations if and only if q≡3(mod 4).