期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
自回归与神经网络组合的网络流量预测模型 被引量:2
1
作者 陈宏 胡宁静 《计算机测量与控制》 CSCD 北大核心 2012年第5期1379-1381,1384,共4页
网络流量具有时变性和非线性,单一预测方法难以准确描述网络流量变化规律,为提高网络流量预测准确率,提出一种网络流量组合预测模型(ARIMA-BPNN);首先采用ARIMA对网络流量进行预测,然后采用BPNN对网络流量非线性变化规律进行预测,且遗... 网络流量具有时变性和非线性,单一预测方法难以准确描述网络流量变化规律,为提高网络流量预测准确率,提出一种网络流量组合预测模型(ARIMA-BPNN);首先采用ARIMA对网络流量进行预测,然后采用BPNN对网络流量非线性变化规律进行预测,且遗传算法优化BPNN初始权值,最后将两者预测结果作为BPNN输入进行二次预测,得到ARIMA-BPNN预测结果;仿真实验结果表明,相对于ARIMA、BPNN,ARIMA-BPNN提高网络流量预测精度,在网络管理中有着广泛的应用前景。 展开更多
关键词 网络流量 自回归滑动平均模型 神经网络 组合模型
下载PDF
ARIMA-BP神经网络高速列车隧道压力波预测模型研究 被引量:6
2
作者 陈春俊 杨露 +1 位作者 何智颖 周林春 《中国测试》 CAS 北大核心 2021年第10期80-86,共7页
为更精准地进行车内压力波动控制,需要预测高速列车通过隧道时车外隧道压力波的实时变化值。在对列车历史运行重复隧道压力波数据的分析基础上,采用工况匹配(WCM)与加权K最近邻(WKNN)算法从数据库中选取若干与本次工况相接近的运行状态... 为更精准地进行车内压力波动控制,需要预测高速列车通过隧道时车外隧道压力波的实时变化值。在对列车历史运行重复隧道压力波数据的分析基础上,采用工况匹配(WCM)与加权K最近邻(WKNN)算法从数据库中选取若干与本次工况相接近的运行状态数据,并根据相似程度确定数据权重,构建预测用的历史数据。分别采用差分自回归滑动平均(ARIMA)与BP神经网络(BPNN)模型对隧道压力波进行预测,并将两种预测结果并联考虑,形成ARIMA-BPNN隧道压力波组合预测模型。利用武广客运专线某隧道压力波实测数据进行仿真。仿真结果表明:与WCM-WKNN-ARIMA及WCM-WKNN-BPNN单一预测模型以及WCM-ARIMA-BPNN组合预测模型相比,所建立组合模型能有效对隧道压力波进行预测,且能够取得更高精度的预测结果。 展开更多
关键词 高速列车 隧道压力波预测模型 差分自回归滑动平均-bp神经网络组合模型 工况匹配算法 加权K最近邻算法
下载PDF
基于ARIMA和小波神经网络组合模型的交通流预测 被引量:24
3
作者 成云 成孝刚 +2 位作者 谈苗苗 周凯 李海波 《计算机技术与发展》 2017年第1期169-172,共4页
针对现阶段城市道路交通流预测精度不高的局限性,提出了一种基于差分自回归滑动平均(ARIMA)和小波神经网络(WNN)组合模型的预测方法来进行交通流预测。利用差分自回归滑动平均模型良好的线性拟合能力和小波神经网络模型强大的非线性关... 针对现阶段城市道路交通流预测精度不高的局限性,提出了一种基于差分自回归滑动平均(ARIMA)和小波神经网络(WNN)组合模型的预测方法来进行交通流预测。利用差分自回归滑动平均模型良好的线性拟合能力和小波神经网络模型强大的非线性关系映射能力,把交通流时间序列的数据结构分解为线性自相关结构和非线性结构两部分。采用差分自回归滑动平均模型预测交通流序列的线性部分,用小波神经网络模型预测其非线性残差部分,最终合成为整个交通流序列的预测结果。计算机仿真结果表明:组合模型的预测精度高于ARIMA模型和WNN模型各自单独使用时的预测精度,组合模型可以提高交通流预测精度,是交通流预测的有效方法。 展开更多
关键词 交通流预测 差分自回归滑动平均模型 小波神经网络 组合模型
下载PDF
基于ARIMA、LS-SVM和BP神经网络组合模型的航空运输飞行事故征候预测 被引量:15
4
作者 梁文娟 李雪艳 《安全与环境工程》 CAS 北大核心 2018年第1期130-136,共7页
应用差分自回归移动平均模型(ARIMA)、最小二乘支持向量机模型(LS-SVM)和BP神经网络模型(BPNN)的组合模型,对某航空公司运输的月度飞行事故征候万时率进行预测分析。首先,利用2008—2016年某航空公司的事故征候、飞行小时、航空器数量... 应用差分自回归移动平均模型(ARIMA)、最小二乘支持向量机模型(LS-SVM)和BP神经网络模型(BPNN)的组合模型,对某航空公司运输的月度飞行事故征候万时率进行预测分析。首先,利用2008—2016年某航空公司的事故征候、飞行小时、航空器数量、原油价格等历史数据建立ARIMA模型,应用SPSS软件进行模型拟合,获取飞行事故征候万时率的线性部分;然后,利用LS-SVM和BP神经网络建模,获取飞行事故征候万时率的非线性部分;最后,利用DS证据理论,实现三者的融合,获得ARIMA+LS-SVM+BPNN组合模型,利用组合模型对2017年1至3月该航空公司的月度飞行事故征候万时率进行预测,并用实际数据进行了验证。结果表明:组合模型较好地拟合了飞行事故征候万时率的历史序列,并获得了较高的预测精度;组合模型的短期(3个月)预测值与该航空公司飞行事故征候万时率的变化趋势完全一致,且预测精确度可接受。该研究可为航空公司安全与运行的趋势分析与判断提供数据依据,也可为航空公司制定针对性的飞行事故征候防控方案提供帮助。 展开更多
关键词 飞行事故征候万时率 组合模型 差分自回归移动平均模型 最小二乘支持向量机模型 BP神经网络模型 航空安全
下载PDF
BP神经网络和ARIMA模型的变权组合电离层TEC预报 被引量:5
5
作者 田祥雨 刘立龙 +2 位作者 杨可可 黎峻宇 陈雨田 《桂林理工大学学报》 CAS 北大核心 2019年第4期899-904,共6页
针对电离层总电子含量(TEC)非线性、非平稳性的特性,提出基于BP神经网络和差分自回归移动平均模型(ARIMA)的最优非负变权组合预报模型,并将其应用于TEC预报。利用IGS中心提供的不同经纬度的电离层平静期、活跃期TEC数据,分别采用BP神经... 针对电离层总电子含量(TEC)非线性、非平稳性的特性,提出基于BP神经网络和差分自回归移动平均模型(ARIMA)的最优非负变权组合预报模型,并将其应用于TEC预报。利用IGS中心提供的不同经纬度的电离层平静期、活跃期TEC数据,分别采用BP神经网络模型、ARIMA模型和变权组合模型对TEC进行5 d预报。实验结果表明:在电离层平静期和活跃期变权组合模型预报5 d的平均相对精度分别为94.7%和88.9%,其中预报残差小于3 TECu的分别达到89.3%和78.5%,较单一模型的预报精度有明显提高。 展开更多
关键词 BP神经网络 差分自回归移动平均模型 电离层 变权组合
下载PDF
基于ARIMA-BP神经网络模型的桥梁SHM应变预测分析 被引量:1
6
作者 邱卓 胡琼清 +2 位作者 伍伟斌 钟菊芳 万灵 《科技和产业》 2022年第8期392-397,共6页
桥梁结构健康监测的应变监测数据具有较强的趋势性与随机性,为提升数据的预测精度,提出将传统单一的自回归积分滑动平均模型(ARIMA)和BP神经网络预测模型进行加权与组合,并将这两种方法分别运用于江西省某跨江大桥桥梁结构健康监测系统... 桥梁结构健康监测的应变监测数据具有较强的趋势性与随机性,为提升数据的预测精度,提出将传统单一的自回归积分滑动平均模型(ARIMA)和BP神经网络预测模型进行加权与组合,并将这两种方法分别运用于江西省某跨江大桥桥梁结构健康监测系统记录的应变监测数据的预测进行验证。结果表明:仅运用单一模型预测时,BP神经网络的预测效果要优于ARIMA模型;加权与组合模型的预测精度均优于单一模型,其中加权模型及组合模型的残差平方和(SSE)与BP神经网络模型相差最大,分别高达50.23%与49.87%;对比加权模型与组合模型的各项误差指标,发现二者预测模型的预测精度极为接近;单一预测模型的误差包络范围大于其他两类模型,其中ARIMA模型的误差总和约为50με,BP神经网络模型的误差总和约为30με,加权模型的误差总和约为21.09με,组合模型的误差总和约为20.97με。经分析,加权预测模型与组合预测模型均能实现对桥梁SHM应变预测。 展开更多
关键词 结构健康监测(SHM) 自回归积分滑动平均模型(ARIMA) BP神经网络 加权预测 组合预测
下载PDF
基于多变量神经网络模型的菜品销量预测 被引量:2
7
作者 陈盼 《信息与电脑》 2022年第13期171-174,共4页
随着互联网技术的发展,人们进入了数字化和智能化的“互联网共享”时代。餐饮企业越来越重视利用数据指引企业理性发展,而餐饮业菜品库存过多或过少会直接影响企业的成本与净利润,因此能够精准预测菜品销量有利于降低餐饮企业的生产成... 随着互联网技术的发展,人们进入了数字化和智能化的“互联网共享”时代。餐饮企业越来越重视利用数据指引企业理性发展,而餐饮业菜品库存过多或过少会直接影响企业的成本与净利润,因此能够精准预测菜品销量有利于降低餐饮企业的生产成本和提高净利润。为了减少采购菜品的浪费和保持菜品的新鲜度,提出了多变量神经网络模型,并利用该模型预测陕西省某餐饮企业近两年的销量数据。结果表明,多变量长短时记忆神经网络模型(Multi-variable Long Short-Term Memory,Multi-LSTM)的预测精度明显优于季节性差分自回归滑动平均模型(Seasonal Autoregressive Integrated Moving Average,SARIMA)和时间序列与神经网络组合模型,且略优于单变量长短时记忆神经网络模型(Single-variable Long Short-Term Memory,Single-LSTM)。 展开更多
关键词 菜品销量预测 季节性差分自回归滑动平均模型(SARIMA) 多变量长短时记忆神经网络模型(Multi-LSTM)
下载PDF
基于组合模型的网络流量预测 被引量:6
8
作者 于静 王辉 《计算机工程与应用》 CSCD 2013年第8期92-95,共4页
网络流量预测是网络管理的基础,网络流量受到多种因素影响,具有周期性、时变性和非线性,传统单一线性模型ARIMA或非线性模型SVM均难以准确描述网络流量复杂变化规律,为此,提出一种网络流量组合预测模型(ARIMA-LSSVM)。采用ARIMA对网络... 网络流量预测是网络管理的基础,网络流量受到多种因素影响,具有周期性、时变性和非线性,传统单一线性模型ARIMA或非线性模型SVM均难以准确描述网络流量复杂变化规律,为此,提出一种网络流量组合预测模型(ARIMA-LSSVM)。采用ARIMA对网络流量进行预测,捕捉其周期性变化趋势,采用LSSVM对网络流量非线性变化趋势进行预测,同时采用遗传算法对LSSVM参数进行优化,采用LSSVM两种预测结果进行融合,得到网络流量的最终预测结果。仿真实验结果表明,相对于单一网络流量预测模型,ARIMA-LSSVM提高网络流量预测精度,更能全面刻画网络流量变化趋势。 展开更多
关键词 网络流量 差分自回归滑动平均模型 最小支持向量机 组合模型
下载PDF
GRNN组合预测模型对辽宁省及部分地区肾综合征出血热发病率的预测研究 被引量:6
9
作者 吴伟 郭军巧 周宝森 《中国媒介生物学及控制杂志》 CAS CSCD 北大核心 2008年第1期44-48,共5页
目的探讨广义回归神经网络(GRNN)组合预测模型在肾综合征出血热(HFRS)发病率预测上的优势及应用前景。方法利用1990-2001年辽宁省、丹东市、沈阳市和朝阳市HFRS发病率分别建立GM(1,1)灰色预测模型和求和自回归滑动平均(ARIMA)模型,把2... 目的探讨广义回归神经网络(GRNN)组合预测模型在肾综合征出血热(HFRS)发病率预测上的优势及应用前景。方法利用1990-2001年辽宁省、丹东市、沈阳市和朝阳市HFRS发病率分别建立GM(1,1)灰色预测模型和求和自回归滑动平均(ARIMA)模型,把2个模型的预测值作为GRNN的输入,实测值作为网络的输出,对样本进行训练和预测,并对3个模型的预测效果进行比较。结果针对辽宁省HFRS发病率建立的GM(1,1)模型、ARIMA模型和GRNN组合预测模型的平均误差率(MER)分别为13.5143%、25.0814%和5.5755%;R2分别为0.8961、0.6997和0.9837。针对丹东市HFRS发病率建立模型的MER分别为19.7329%、20.6275%和14.0789%;R2分别为0.8112、0.7628和0.8750。针对沈阳市HFRS发病率建立模型的MER分别为15.1421%、18.0584%和14.3592%;R2分别为0.8757、0.7889和0.8585。针对朝阳市HFRS发病率建立模型的MER分别为51.5090%、28.6593%和28.5927%;R2分别为0.7863、0.8291和0.7753。GRNN组合预测模型对于辽宁省和丹东市的HFRS发病率预测效果好于2个单一模型;针对沈阳市所建立的HFRS发病率预测模型,GRNN组合预测模型和GM(1,1)模型相当,ARIMA模型最差。朝阳市的HFRS发病率预测模型不适合用上述方法建立。结论GRNN组合预测模型充分体现了它在小样本预测中的优势,预测效果优于GM(1,1)模型和ARIMA模型,对解决时间序列类型的HFRS发病率等资料有很好的实用价值。 展开更多
关键词 肾综合征出血热 广义回归神经网络 GM(1 1)模型 求和自回归滑动平均模型 组合预测
下载PDF
马尔科夫链改进的ARIMA-BP神经网络模型研究 被引量:8
10
作者 邹进贵 肖扬宣 张士勇 《测绘地理信息》 2016年第4期32-36,共5页
地基沉降的机理十分复杂,难以用一种预测模型精确预测。结合某地基沉降的实际数据,采用时间序列分析法和BP神经网络法相结合的组合模型进行预测,并用马尔科夫理论对预测结果进行改进,得到了更可靠的结果。
关键词 地基沉降预测 自回归滑动平均 反向传播神经网络 自回归滑动平均和反向传播神经网络组合模型 马尔科夫
原文传递
基于最优加权组合模型的枯季径流预测研究 被引量:13
11
作者 孙惠子 粟晓玲 昝大为 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2011年第11期201-208,共8页
【目的】研究最优的枯季径流预测模型,为流域水资源管理提供依据。【方法】建立基于差分自回归移动平均(ARIMA)、人工神经网络(ANN)和多元线性回归(MLR)3个单项模型的简单平均组合和最优加权组合预测模型,并将单项预报模型和组合模型应... 【目的】研究最优的枯季径流预测模型,为流域水资源管理提供依据。【方法】建立基于差分自回归移动平均(ARIMA)、人工神经网络(ANN)和多元线性回归(MLR)3个单项模型的简单平均组合和最优加权组合预测模型,并将单项预报模型和组合模型应用到石羊河流域支流西营河的枯季径流预测中,采用相关系数、确定性系数以及均方根误差对各模型预测精度进行比较。【结果】单项预测模型中,仅ARIMA模型通过了确定性系数检验;最优加权组合模型的预测精度较简单平均组合模型高;组合预测模型中,仅ARIMA-MLR和ARIMA-ANN最优加权组合模型的确定性系数高于所有单项预测模型。【结论】最优加权组合模型的精度不但取决于各单项预测模型的精度,也与其之间的相关性有关,适合西营河枯季径流预测的最优加权组合模型是ARIMA-MRL和ARIMA-ANN组合模型。 展开更多
关键词 枯季径流预测 差分自回归移动平均 人工神经网络 多元线性回归 组合预测模型 西营河
下载PDF
高速公路交通量组合预测模型研究 被引量:6
12
作者 钱超 许宏科 徐娜 《计算机仿真》 CSCD 北大核心 2013年第4期178-182,共5页
交通量具有高度复杂的非线性特征,采用单一预测模型往往难以达到理想的预测效果。为准确预测,提出一种最优线性组合预测模型并给出了以预测误差平方和最小为目标函数的权系数最优解计算方法,在采用ARIMA模型、BP神经网络和支持向量回归... 交通量具有高度复杂的非线性特征,采用单一预测模型往往难以达到理想的预测效果。为准确预测,提出一种最优线性组合预测模型并给出了以预测误差平方和最小为目标函数的权系数最优解计算方法,在采用ARIMA模型、BP神经网络和支持向量回归机的基础上,利用组合预测模型实现了高速公路月度交通量的预测。实验结果表明:与季节差分自回归滑动平均模型、BP神经网络和支持向量回归机等预测模型相比,组合预测模型各项评价指标均优于前三者,为实现交通量准确预测提供了更为科学的依据。 展开更多
关键词 组合预测模型 交通量预测 季节差分自回归滑动平均模型 神经网络 支持向量回归
下载PDF
短时车流量组合预测模型 被引量:4
13
作者 张凯 卢邹颖 《南京信息工程大学学报(自然科学版)》 CAS 2013年第5期414-420,共7页
随着道路车量不断增多,由交通异常事件造成的非正常拥堵情况严重影响了出行者的出行效率和路网的整体运行水平.因此,需要准确及时地检测出非正常拥堵情况,通过诱导、疏通等方式改善拥堵状况.对车流量的准确预测是检测非正常拥堵的有效方... 随着道路车量不断增多,由交通异常事件造成的非正常拥堵情况严重影响了出行者的出行效率和路网的整体运行水平.因此,需要准确及时地检测出非正常拥堵情况,通过诱导、疏通等方式改善拥堵状况.对车流量的准确预测是检测非正常拥堵的有效方法.根据交通流量的不确定性和非线性的特点,将改进的BP神经网络模型和ARIMA模型进行组合,建立组合预测模型.实验结果表明,组合模型的预测结果比单个模型的预测结果理想,且达到较高的预测精度. 展开更多
关键词 车流量预测 BP神经网络 差分自回归移动平均模型 组合预测
下载PDF
风电场短期功率组合预测模型研究
14
作者 徐晓玲 郑潇 《华东交通大学学报》 2013年第5期81-86,共6页
由于风能的间歇性,电网调度与运行一定程度上将依赖于对风电场短期输出功率的准确预测。利用某风电场输出功率14 d的历史数据建立3种单项预测模型,对未来36 h的短期功率进行预测。基于3种单项预测方法的结果,提出了3种组合预测模型:熵... 由于风能的间歇性,电网调度与运行一定程度上将依赖于对风电场短期输出功率的准确预测。利用某风电场输出功率14 d的历史数据建立3种单项预测模型,对未来36 h的短期功率进行预测。基于3种单项预测方法的结果,提出了3种组合预测模型:熵值法组合预测模型、以预测误差平方和最小的线性组合预测模型、基于诱导有序集结算子(IOWA算子)的组合预测模型。通过实例分析,3种组合预测模型有效结合了各单项预测模型的信息,均能取得较理想的效果。其中,基于IO WA算子的组合预测模型为所有6种预测方法中的最优。 展开更多
关键词 风电场 自回归-滑动平均模型 人工神经网络 组合预测 诱导有序信息集结算子
下载PDF
基于ARIMA-BP模型的北京市平谷区地下水水质双尺度预测 被引量:2
15
作者 秦梓萱 郭健 许模 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期121-128,共8页
选取区域尺度监测井PG-32和场地尺度监测井PG-45、PG-56中的水质指标为研究对象,采用差分自回归移动平均(ARIMA)模型对Cl-、SO42-和总溶解性固体物质(TDS)浓度进行线性预测,利用反向传播(BP)神经网络模型和等权重法组合ARIMA-BP模型对... 选取区域尺度监测井PG-32和场地尺度监测井PG-45、PG-56中的水质指标为研究对象,采用差分自回归移动平均(ARIMA)模型对Cl-、SO42-和总溶解性固体物质(TDS)浓度进行线性预测,利用反向传播(BP)神经网络模型和等权重法组合ARIMA-BP模型对监测井PG-32中的Cl-、SO42-和TDS指标浓度进行非线性预测.结果表明,线性预测方法更适用于区域尺度下的水质预测;ARIMA模型、BP神经网络模型和ARIMA-BP组合模型对PG-32中水质指标预测的平均相对误差分别为6.11%、6.17%和2.94%,验证了组合模型的优越性;ARIMA-BP模型的预测显示未来区域地下水中Cl-、SO42-浓度变化相对平稳,TDS浓度呈现上升趋势,需引起地下水预警的重视. 展开更多
关键词 地下水水质预测 差分自回归移动平均模型 反向传播神经网络模型 组合模型 双尺度
下载PDF
分解组合模型在短期燃气预测中的应用 被引量:1
16
作者 康琪 林军 《微型机与应用》 2013年第16期93-96,共4页
在对城市燃气负荷数据特性进行分析的基础上,提出了针对城市燃气负荷量短期预测的思想即分解-组合预测模型,同时提出了三种分解方法对分解-组合预测模型进行了验证。首先在建模之前运用数据挖掘的方法对原始数据集进行了离群点挖掘与修... 在对城市燃气负荷数据特性进行分析的基础上,提出了针对城市燃气负荷量短期预测的思想即分解-组合预测模型,同时提出了三种分解方法对分解-组合预测模型进行了验证。首先在建模之前运用数据挖掘的方法对原始数据集进行了离群点挖掘与修正;其次,为了验证准确性,将三种方法的预测结果与其他单一、组合模型预测结果进行对比;最后为了验证该模型的有效性、适用性,对特殊日期、天气和其另一组燃气负荷量数据集进行了建模和预测,通过对预测值和实际值的误差分析,实验结果进一步验证了分解-组合模型的适应性和准确性。 展开更多
关键词 城市燃气负荷量 短期负荷预测方法 BP神经网络 差分自回归移动平均模型 小波分频 分解-组合模型
下载PDF
基于LSTM-ARIMA组合模型的区域短期用电量预测 被引量:2
17
作者 刘侃 何家峰 蔡高琰 《信息技术与网络安全》 2021年第10期48-52,共5页
用电数据具有不平稳、非线性的特点,为了提升对用电数据的拟合精度,增强预测能力,基于序列预测与残差修正的思想提出通过长短期记忆神经网络(Long Short-Term Memory Neural Network,LSTM)对用电量序列进行预测,真实值与预测值所构成的... 用电数据具有不平稳、非线性的特点,为了提升对用电数据的拟合精度,增强预测能力,基于序列预测与残差修正的思想提出通过长短期记忆神经网络(Long Short-Term Memory Neural Network,LSTM)对用电量序列进行预测,真实值与预测值所构成的差值即残差用差分自回归移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)进行残差修正,将LSTM的预测值与ARIMA的残差修正值进行重构得到最终的预测值。最后利用广东省佛山市某工业园区的用电数据对组合模型进行验证,实验结果显示该模型的预测精度与预测稳定性均优于其他模型,取得了良好的预测效果。 展开更多
关键词 长短期记忆神经网络 差分自回归移动平均模型 组合模型
下载PDF
基于组合模型的浙江省GDP预测研究 被引量:3
18
作者 张秀华 马佳杰 +2 位作者 徐雷 张国栋 田旭 《科技和产业》 2021年第12期370-376,共7页
区域GDP的发展趋势是高速公路规划和建设的重要参考依据。基于浙江省1978—2019年的GDP数据,分析数据特性,构建预测模型,掌握发展规律。首先,将GDP数据转化为时间序列,建立ARIMA(2,2,0)模型;其次,将GDP数据以滑动窗口的方式生成输入矩阵... 区域GDP的发展趋势是高速公路规划和建设的重要参考依据。基于浙江省1978—2019年的GDP数据,分析数据特性,构建预测模型,掌握发展规律。首先,将GDP数据转化为时间序列,建立ARIMA(2,2,0)模型;其次,将GDP数据以滑动窗口的方式生成输入矩阵,建立BP神经网络模型;最后,利用ARIMA分析GDP时序的线性部分,利用BP神经网络分析GDP时序的非线性部分,建立组合模型。通过计算相对误差比较模型的预测效果,3个模型的平均相对误差分别为6.30%、13.10%、6.08%。结果表明,组合模型的平均相对误差最小,预测效果最好。 展开更多
关键词 GDP预测 时间序列 差分自回归移动平均(ARIMA) BP神经网络 组合模型
下载PDF
一种基于ARIMA-LSTM组合模型的电压偏差预测方法 被引量:1
19
作者 李孟特 于晟华 +2 位作者 王森 曹戈 戴雨聪 《电力大数据》 2022年第5期28-35,共8页
电网中的无功功率、三相电网不平衡等因素使得电能质量问题日趋严重,必须采取有力的监测措施去改善和控制电网中电能质量。监控模块中的预警预测算法的优化是亟须解决的重要问题。本文选取上海市某220kV变电站电能质量数据,以电压偏差... 电网中的无功功率、三相电网不平衡等因素使得电能质量问题日趋严重,必须采取有力的监测措施去改善和控制电网中电能质量。监控模块中的预警预测算法的优化是亟须解决的重要问题。本文选取上海市某220kV变电站电能质量数据,以电压偏差数据为例,根据其时间序列特征提出一种基于ARIMA-LSTM组合模型的电压偏差预测方法。利用ARIMA模型对时间序列数据拟合,将原始序列分解为两条序列,即预测值序列和误差值序列。LSTM模型对误差值序列进行拟合优化,并与ARIMA模型所得预测值序列叠加得到最终预测结果。实验对比分析了单一模型ARIMA与组合模型ARIMA-LSTM在误差值序列优化后的精确度。实验表明,组合模型将预测的误差值进一步优化后,预测效果优于单一模型。实验证明了该方法是有效可行的,值得优先采用。 展开更多
关键词 差分整合移动平均自回归模型 长短期记忆神经网络 时间序列 组合模型 电压偏差
下载PDF
采用改进模糊层次分析法的风速预测模型 被引量:35
20
作者 黄文杰 傅砾 肖盛 《电网技术》 EI CSCD 北大核心 2010年第7期164-168,共5页
针对风速具有较强随机性的特点,提出一种基于改进模糊层次分析法的风速预测组合模型。以风速预测周期、风速的振荡性及预测者对预测模型的信赖度为目标准则;通过模糊判断矩阵的方法确定组合模型的最优权重。该组合模型可以综合考虑影响... 针对风速具有较强随机性的特点,提出一种基于改进模糊层次分析法的风速预测组合模型。以风速预测周期、风速的振荡性及预测者对预测模型的信赖度为目标准则;通过模糊判断矩阵的方法确定组合模型的最优权重。该组合模型可以综合考虑影响风速预测的多种不确定性因素,在综合不同模型预测结果的基础上引入专家经验。算例分析表明,该组合预测模型的预测结果与传统的单一预测模型相比,误差更小,精度更高。 展开更多
关键词 风速预测 组合模型:模糊层次分析法 时序差分自回归滑动平均模型 自适应模糊神经删络模型
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部