期刊文献+
共找到183篇文章
< 1 2 10 >
每页显示 20 50 100
基于改进粒子群优化极限学习机的弹丸参数辨识 被引量:6
1
作者 夏悠然 管军 易文俊 《系统工程与电子技术》 EI CSCD 北大核心 2023年第2期521-529,共9页
针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题,本文将粒子群算法与极限学习机结合,并且引入自适应更新策略以及粒子变异策略,提出了一种自适应变异粒子群优化极限学习机算法。... 针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题,本文将粒子群算法与极限学习机结合,并且引入自适应更新策略以及粒子变异策略,提出了一种自适应变异粒子群优化极限学习机算法。该算法利用自适应变异粒子群算法寻优产生极限学习机的输入权重和隐含层阈值,有效改善算法性能。仿真实验表明,利用自适应变异粒子群优化极限学习机算法辨识弹丸气动参数,精度高、收敛速度快,能够充分满足实际工程需要。 展开更多
关键词 弹丸 气动参数辨识 极限学习 粒子优化算法 自适应更新策略 粒子变异策略
下载PDF
极限学习决策网络指导的多目标粒子群算法
2
作者 张一帆 宋威 《计算机科学与探索》 CSCD 北大核心 2024年第6期1513-1525,共13页
在求解多目标优化问题时,粒子群优化算法通常采用预设的榜样选择方法和搜索策略,无法根据具体的寻优状态进行调整。面对不同的优化问题,不合适的搜索策略难以有效指导种群的进化,导致种群的搜索性能降低。为了解决以上问题,提出一种极... 在求解多目标优化问题时,粒子群优化算法通常采用预设的榜样选择方法和搜索策略,无法根据具体的寻优状态进行调整。面对不同的优化问题,不合适的搜索策略难以有效指导种群的进化,导致种群的搜索性能降低。为了解决以上问题,提出一种极限学习决策网络指导的多目标粒子群优化算法(ELDN-PSO)。首先,将多目标优化问题分解成若干标量子问题,并构建一个极限学习决策网络。网络将粒子的位置作为输入,根据当前寻优状态为每个粒子选择合适的搜索动作。将粒子在子问题上的适应度值变化作为强化学习的样本用于训练网络,并通过极限学习机提升训练速度。在优化的过程中,网络会根据寻优状态自动调整,在不同的搜索阶段为粒子选择合适的搜索策略。其次,多目标优化问题中存在一系列难以比较的非支配解,将每个解的领导能力量化成可进行比较的数值,从而更明确地为粒子选择合适的学习榜样。此外,使用一个外部档案储存较好的粒子,用于维护解集质量并指导种群的进化。在ZDT和DTLZ测试函数上进行对比实验,结果表明ELDN-PSO能够有效应对不同形状的Pareto前沿,提升种群的寻优速度以及解集的收敛性和多样性。 展开更多
关键词 粒子优化 极限学习 多目标优化 目标分解 加速系数
下载PDF
基于小波去噪及优化极限学习机的城市轨道沉降预测
3
作者 王超 蔡足根 毛龙栋 《北京测绘》 2024年第7期986-991,共6页
地铁轨道结构变形是影响地铁安全运营的重要因素,尤其是在沉降变形方面,因此监测地铁轨道沉降变形,同时根据监测结果对轨道的沉降变形趋势进行准确判断具有重要意义。本文以某市地铁2号线轨道监测数据为例,发挥小波分析与极限学习机(ELM... 地铁轨道结构变形是影响地铁安全运营的重要因素,尤其是在沉降变形方面,因此监测地铁轨道沉降变形,同时根据监测结果对轨道的沉降变形趋势进行准确判断具有重要意义。本文以某市地铁2号线轨道监测数据为例,发挥小波分析与极限学习机(ELM)模型在数据处理、数据预测中的优势,将粒子群优化(PSO)算法用于ELM模型参数优化中,构建基于小波去噪的PSO-ELM组合预测模型,进行地铁轨道的沉降变形预测研究。通过小波分析进行监测数据去噪,解决了监测数据不稳定带来的预测结果的干扰问题;通过构建PSO-ELM组合预测模型,解决了模型参数选取随机性带来的预测精度受限问题。本文将提出的小波去噪PSO-ELM模型与单一ELM模型、小波去噪ELM模型的沉降预测结果进行对比分析,结果表明本文提出的组合预测模型预测精度最高,同时预测误差不会随预测期数的增加产生明显变化,具有较高的稳健性与适应性。 展开更多
关键词 地铁轨道 沉降预测 小波去噪 粒子优化(PSO) 极限学习(ELM)
下载PDF
电推进GEO卫星的改进粒子群轨道保持优化设计
4
作者 吕跃勇 王成 +2 位作者 李笑月 郑重 郭延宁 《宇航学报》 EI CAS CSCD 北大核心 2024年第4期523-531,共9页
针对地球同步轨道(GEO)卫星轨道保持问题,提出了一种基于改进粒子群算法(PSO)的序列电推力轨道保持方法。首先,建立了GEO卫星高精度非线性轨道动力学模型和序列电推力模型。然后,设计了GEO卫星相对轨道保持策略,建立了以燃料消耗为性能... 针对地球同步轨道(GEO)卫星轨道保持问题,提出了一种基于改进粒子群算法(PSO)的序列电推力轨道保持方法。首先,建立了GEO卫星高精度非线性轨道动力学模型和序列电推力模型。然后,设计了GEO卫星相对轨道保持策略,建立了以燃料消耗为性能指标的序列电推力轨道保持问题优化模型并进行了离散化。接着,通过引入差分进化算法和维度学习策略对粒子群优化算法进行了适应性改进,同时对推力大小和作用时间进行寻优计算。最后,通过数值仿真对所提出的改进粒子群优化算法进行了对比校验。结果表明,该方法在完成GEO卫星轨道保持任务的同时具备燃料消耗低和收敛速度快等优点。 展开更多
关键词 卫星轨道保持 电推进 粒子优化 差分进化 维度学习
下载PDF
基于改进粒子群优化的并行极限学习机 被引量:11
5
作者 李婉华 陈羽中 +2 位作者 郭昆 郭松荣 刘漳辉 《模式识别与人工智能》 EI CSCD 北大核心 2016年第9期840-849,共10页
为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM).结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数.通过引入变异算子,增强种群的多样性,并提高收敛速度.为了处理大规... 为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM).结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数.通过引入变异算子,增强种群的多样性,并提高收敛速度.为了处理大规模电力负荷数据,提出基于Spark并行计算框架的并行化算法(PIPSO-ELM).基于真实电力负荷数据的实验表明,PIPSO-ELM具有更高的稳定性及可扩展性,适合处理大规模的电力负荷数据. 展开更多
关键词 电力负荷预测 极限学习(ELM) 粒子优化 变异算子 并行计算
下载PDF
基于粒子群优化极限学习机的水质评价新模型 被引量:18
6
作者 张颖 李梅 《环境科学与技术》 CAS CSCD 北大核心 2016年第5期135-139,共5页
河流水质实时评价技术对当前河流水资源管理和保护具有重要意义。该文以淮河水质为例,利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)分类算法对淮河水质进行类别判定。在极限学习机(ELM)... 河流水质实时评价技术对当前河流水资源管理和保护具有重要意义。该文以淮河水质为例,利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)分类算法对淮河水质进行类别判定。在极限学习机(ELM)分类算法中随机给定输入权值矩阵和隐含层偏置,需要较多的隐含层节点才能达到所需的精度要求,隐含层节点过多易于出现过拟合现象并增加算法的计算量。该文利用粒子群算法(PSO)优化极限学习机的输入权值矩阵和隐含层偏置,计算输出权值矩阵,以减少隐含层节点。通过对比PSO-ELM、ELM这2种算法发现,PSO-ELM算法以较少的隐含层节点可获得更高的精度,降低了对实验样本的需求量,提高了模型的拟合能力。实验结果表明,PSO-ELM对于水质类别判定具有一定的可行性和有效性。 展开更多
关键词 粒子优化 极限学习 水质评价 权值 隐含层
下载PDF
基于改进粒子群优化算法和极限学习机的混凝土坝变形预测 被引量:30
7
作者 李明军 王均星 王亚洲 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2019年第11期1136-1144,共9页
混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网... 混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网络模型收敛速度慢和过度拟合等问题,提出了一种基于改进型粒子群优化算法选取极限学习机(ELM-IPSO)最优参数的大坝变形预测模型.针对传统粒子群算法搜索时间长、容易陷入局部最优的特点,采用自适应惯性权重和动态调整学习因子,对粒子群算法进行了改进.研究表明,IPSO算法提高了粒子群优化的全局搜索能力,提高了计算效率.应用IPSO优化ELM模型的初始权值和阈值.通过东江混凝土拱坝的实测资料,验证ELM-IPSO模型的预测性能.将计算结果与BPNN模型、ELM模型和传统ELM-PSO模型的结果进行比较.BPNN模型、ELM模型、ELM-PSO模型和ELM-IPSO模型的平方相关系数R2分别为89.15%、91.13%、93.87%和94.36%.ELM模型的R2大于BPNN模型,说明ELM模型比常规的BPNN模型预测精度更高,泛化性能更好.ELM-PSO模型的预测精度大于ELM模型,说明PSO对ELM的优化在提高预测精度方面具有良好的作用.4个模型中,ELM-IPSO模型的R^2最大,预测精度最高,这表明提出的ELM-IPSO模型能够有效提高混凝土坝变形的预测能力. 展开更多
关键词 混凝土大坝变形 极限学习 BP神经网络 改进的粒子优化算法
下载PDF
基于改进粒子群算法优化的染色木材颜色检测算法研究
8
作者 管雪梅 吴言 杨渠三 《林产工业》 北大核心 2024年第1期1-7,共7页
为提高染色木材颜色的检测精度和速度,对樟子松木材单板进行染色,选取染色单板的光谱反射率作为输入,以极限学习机模型为基础构建预测模型,对染色单板的色度参数L^(*)、a^(*)、b^(*)进行预测,运用粒子群算法对ELM权值和阈值进行寻优,并... 为提高染色木材颜色的检测精度和速度,对樟子松木材单板进行染色,选取染色单板的光谱反射率作为输入,以极限学习机模型为基础构建预测模型,对染色单板的色度参数L^(*)、a^(*)、b^(*)进行预测,运用粒子群算法对ELM权值和阈值进行寻优,并引入非线性惯性权重和新的位置与速度更新策略改进粒子群算法,以消除其易陷入局部最优的缺点。此外,以L^(*)、a^(*)、b^(*)平均绝对误差为评价指标,与基础ELM模型及其他模型作对比,发现优化后的模型平均绝对误差为0.16,测色效果相较于基础ELM的0.68、麻雀算法优化的ELM的0.37等具有明显优势,这对于提高木材染色生产效率具有重要意义。 展开更多
关键词 粒子算法 极限学习 反射率 惯性权重 全局优化
下载PDF
粒子群优化核极限学习机的变压器故障诊断 被引量:15
9
作者 裴飞 陈雪振 +1 位作者 朱永利 遇炳杰 《计算机工程与设计》 北大核心 2015年第5期1327-1331,共5页
核极限学习机(kernel-based extreme learning machine,KELM)在分类性能方面优于支持向量机(SVM),但仍存在参数敏感性的缺陷。针对这一缺陷,提出一种结合K折交叉验证(k-fold cross validation,K-CV)与粒子群优化(particle swarm optimiz... 核极限学习机(kernel-based extreme learning machine,KELM)在分类性能方面优于支持向量机(SVM),但仍存在参数敏感性的缺陷。针对这一缺陷,提出一种结合K折交叉验证(k-fold cross validation,K-CV)与粒子群优化(particle swarm optimization,PSO)的KELM分类器参数优化方法,将CV训练所得多个模型的平均准确率作为PSO的适应度评价函数,为KELM的参数优化提供评价标准。将该方法应用于变压器故障诊断中,充分利用数量有限的样本数据,提高KELM的泛化性能。实验结果表明,相比结合网格搜索(grid)的KELM、结合CV和Grid的KELM以及结合PSO的KELM,结合PSO的CV参数优化方法具有更好的性能。 展开更多
关键词 极限学习 粒子优化 交叉验证 变压器故障诊断 参数优化
下载PDF
基于粒子群优化极限学习机的排水管结构状况评价 被引量:8
10
作者 郑茂辉 刘少非 +1 位作者 柳娅楠 李浩楠 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期513-516,551,共5页
基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器... 基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器模型进行训练测试,并与ELM分类结果进行对比分析。结果表明,PSO ELM算法以较少的隐含层神经元节点获得更高的分类精度,参数优化提高了模型拟合能力,对于城市排水管道结构性状况分类、判断具有可行性和有效性。 展开更多
关键词 排水管道 结构性状况评价 极限学习 粒子优化
下载PDF
免疫粒子群优化核极限学习机变压器故障诊断 被引量:1
11
作者 魏巍 马心怡 薛鹏 《长春工业大学学报》 CAS 2020年第5期430-435,共6页
将粒子群优化和人工免疫算法相融合应用于核极限学习机算法的参数优化,进行了相关实验。
关键词 极限学习 粒子优化 人工免疫 变压器故障诊断
下载PDF
基于粒子群算法优化极限学习机的无源目标定位算法 被引量:2
12
作者 傅彬 《计算机应用与软件》 CSCD 2015年第11期325-328,共4页
为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进... 为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进行优化,最后在Matlab 2009平台进行仿真对比实验。结果表明,相对于其他目标定位算法,该算法提高了目标定位的精度,更加适合于复杂环境下的目标定位。 展开更多
关键词 位置信息场 目标定位粒子优化算法极限学习
下载PDF
基于粒子群优化极限学习机的睡眠分期方法 被引量:2
13
作者 吴振华 邱倩 《物联网技术》 2021年第9期30-37,共8页
睡眠分期是诊断睡眠障碍等相关疾病的重要依据,如今对睡眠分期的检测不再局限于在专业的睡眠检测机构实现,人们在家中也可以实现,因此,如何提高睡眠分期检测的准确率已成为当前研究的热点。采用心电信号、呼吸信号以及心肺耦合信号进行... 睡眠分期是诊断睡眠障碍等相关疾病的重要依据,如今对睡眠分期的检测不再局限于在专业的睡眠检测机构实现,人们在家中也可以实现,因此,如何提高睡眠分期检测的准确率已成为当前研究的热点。采用心电信号、呼吸信号以及心肺耦合信号进行特征提取,使用PCA和粒子群优化算法(PSO)进行特征选择,将PSO与极限学习机(ELM)相结合对睡眠进行分期,在二类分期上准确率可达91.38%,在三类分期和四类分期上准确率均超过80%,在六类分期上也可以达到76.63%。与隐马尔可夫与BP神经网络的混合模型(HMM-BP)、最小二乘支持向量机(LSSVM)等现有睡眠分期方案相比,文中方案具有一定的优势。同时还比较了支持向量机(SVM)和ELM方法对睡眠分期的准确率,结果均低于结合PSO后的SVM和ELM。实验结果表明,加入PSO算法能够缓解ELM模型过拟合的现象并提高模型对睡眠分类的准确率。 展开更多
关键词 睡眠分期 心电信号 呼吸信号 心肺耦合信号 粒子优化算法 极限学习
下载PDF
粒子群优化混合核极限学习机的构造煤厚度预测方法 被引量:16
14
作者 范君 王新 徐慧 《计算机应用》 CSCD 北大核心 2018年第6期1820-1825,1830,共7页
在构造煤厚度的预测中,针对预测精度不高的问题,提出利用粒子群优化(PSO)算法优化极限学习机(ELM)的方法来对构造煤厚度进行预测。首先,利用主成分分析(PCA)对三维地震属性进行降维处理,在降低地震属性的维数的同时消除变量之间的相关... 在构造煤厚度的预测中,针对预测精度不高的问题,提出利用粒子群优化(PSO)算法优化极限学习机(ELM)的方法来对构造煤厚度进行预测。首先,利用主成分分析(PCA)对三维地震属性进行降维处理,在降低地震属性的维数的同时消除变量之间的相关性。然后,构建全局多项式核函数和局部高斯径向基核函数混合核极限学习机(HKELM)模型,并利用PSO算法优化HKELM的核参数。同时,针对PSO算法存在容易陷入局部最优的问题,在PSO算法中加入模拟退火的思想和随迭代次数减小的惯性权重,以及基于反向学习的变异操作,使PSO算法可以更容易跳出局部极小值点,得到更优结果。此外,为了增强模型的泛化能力,在核函数的基础上加入L2正则项,有效地避免了噪声和异常点对模型泛化性能的影响。最后,将预测模型应用到阳煤集团新景矿区芦南二采区中部15#煤层中,预测得到的采区构造煤厚度与实际地质资料具有较高的一致性。实验结果表明,利用改进PSO算法优化HKELM构建构造煤厚度预测模型的预测误差较小,可以推广用于实际采区的构造煤厚度预测。 展开更多
关键词 主成分分析 粒子优化 核函数 极限学习 构造煤 厚度预测
下载PDF
基于改进粒子群优化和极限学习机的网络安全态势预测 被引量:23
15
作者 唐延强 李成海 宋亚飞 《计算机应用》 CSCD 北大核心 2021年第3期768-773,共6页
针对网络安全态势预测模型预测精度不高、收敛较慢等问题,提出了一种基于改进粒子群优化极限学习机(IPSO-ELM)算法的预测方法。首先,通过改进粒子群优化(PSO)算法中的惯性权重和学习因子来实现两种参数随着迭代次数增加的自适应调整,使... 针对网络安全态势预测模型预测精度不高、收敛较慢等问题,提出了一种基于改进粒子群优化极限学习机(IPSO-ELM)算法的预测方法。首先,通过改进粒子群优化(PSO)算法中的惯性权重和学习因子来实现两种参数随着迭代次数增加的自适应调整,使PSO初期搜索范围大、速度高,后期收敛能力强、稳定。其次,针对PSO易陷入局部最优的问题,提出一种粒子停滞扰动策略,将陷入局部最优的粒子重新引导至全局最优飞行。改进粒子群优化(IPSO)算法既保证了全局寻优的能力,又对局部搜索能力有所增强。最后,将IPSO与极限学习机(ELM)结合来优化ELM的初始权值及阈值。与ELM相比,结合IPSO的ELM的预测精度提高了44.25%。实验结果表明,与PSO-ELM相比,IPSO-ELM的预测结果拟合度可达到0.99,收敛速度提升了47.43%。所提算法在预测精度和收敛速度等指标上明显优于对比算法。 展开更多
关键词 网络安全 态势预测 粒子优化 极限学习 神经网络 惯性权重
下载PDF
基于粒子群优化核极限学习机的北斗超快速钟差预报 被引量:16
16
作者 李文涛 边少锋 +2 位作者 任青阳 梅长松 潘雄 《宇航学报》 EI CAS CSCD 北大核心 2019年第9期1080-1088,共9页
针对卫星钟差序列中非线性特性较为复杂和超快速钟差预报精度较低的问题,将核极限学习机算法引入到北斗超快速钟差预报中。首先,将极限学习机进行优化,引入粒子群优化算法来选择核极限学习机所需的核参数和正则化参数;然后,将优化后的... 针对卫星钟差序列中非线性特性较为复杂和超快速钟差预报精度较低的问题,将核极限学习机算法引入到北斗超快速钟差预报中。首先,将极限学习机进行优化,引入粒子群优化算法来选择核极限学习机所需的核参数和正则化参数;然后,将优化后的方法应用到超快速钟差预报中,并给出了利用该方法进行超快速钟差预报的步骤;最后,在分析iGMAS提供的实测北斗超快速钟差数据的基础上,选用单天和多天数据进行短期预报。结果表明:在短期预报6h范围内,利用本文提供的优化方法解算得到的超快速钟差预报精度明显优于二次多项式模型和周期项模型,并且采用此方法得到的超快速钟差预报产品与iGMAS提供的超快速钟差预报产品(ISU-P)相比,GEO、IGSO和MEO卫星的预报精度分别提升了50. 51%、46. 98%、40. 67%,其与最终精密钟差的符合程度显著增强。 展开更多
关键词 iGMAS 北斗超快速钟差预报 极限学习 粒子优化 最终精密钟差
下载PDF
基于粒子群优化在线顺序极限学习机动态环境室内定位算法 被引量:2
17
作者 韩承毅 苏胜君 +2 位作者 施伟斌 乐燕芬 李瑞祥 《数据采集与处理》 CSCD 北大核心 2022年第6期1345-1352,共8页
动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online s... 动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online sequential extreme learning machine,PSO⁃OS⁃ELM)。该算法继承了在线顺序极限学习机(Online sequential extreme learning machine,OS⁃ELM)算法的数据采集成本低、适应环境变化快、收敛速度较快且定位精度较高等特性,同时又利用粒子群优化(Particle swarm optimization,PSO)解决OS⁃ELM算法中奇异值问题和鲁棒性问题。在3种不同环境下采集数据,将PSO⁃OS⁃ELM算法、OS⁃ELM算法和WKNN算法进行实验对比。实验结果表明:在动态变化的室内环境中,PSO⁃OS⁃ELM算法定位误差较小且鲁棒性增强,优于其他算法;平均定位误差相较于其他算法减少了约15%;算法耗时性相较于传统定位算法加权K近邻算法(Weighted K⁃nearest neighbor,WKNN)算法减少了约55%。 展开更多
关键词 粒子优化 在线顺序极限学习 接收信号强度 动态环境 室内定位
下载PDF
改进粒子群优化的极限学习机软测量建模方法 被引量:11
18
作者 盛晓晨 史旭东 熊伟丽 《计算机应用研究》 CSCD 北大核心 2020年第6期1683-1687,共5页
工业过程常含有显著的非线性、时变等复杂特性,传统的极限学习机有时无法充分利用数据信息,所建软测量模型预测性能较差。为了提高极限学习机的泛化能力和预测精度,提出一种改进粒子群优化的极限学习机软测量建模方法。首先,利用高斯函... 工业过程常含有显著的非线性、时变等复杂特性,传统的极限学习机有时无法充分利用数据信息,所建软测量模型预测性能较差。为了提高极限学习机的泛化能力和预测精度,提出一种改进粒子群优化的极限学习机软测量建模方法。首先,利用高斯函数正态分布的特点实现惯性权重的自适应更新,并线性变化学习因子以提高粒子群优化算法的收敛速度和搜索性能;然后将该算法用于优化极限学习机的惩罚系数和核宽,得到一组最优超参数;最后将该方法应用于脱丁烷塔过程软测量建模中。仿真结果表明,优化后的极限学习机模型预测精度有明显的提高,验证了所提方法不仅是可行的,而且具有良好的预测精度和泛化性能。 展开更多
关键词 软测量建模 极限学习 粒子优化算法 自适应权重
下载PDF
粒子群算法优化极限学习机的旋风分离器压降建模 被引量:3
19
作者 王兆熙 延会波 张玮 《天然气化工—C1化学与化工》 CAS 北大核心 2021年第4期119-125,共7页
旋风分离器是化工行业常用气固分离装置,准确地预测旋风分离器的压降性能,并对其进行设计和放大至关重要。当前旋风分离器压降模型存在建模时间较长和预测精度较差的问题,为此采用极限学习机(Extreme learning machine,ELM)对旋风分离... 旋风分离器是化工行业常用气固分离装置,准确地预测旋风分离器的压降性能,并对其进行设计和放大至关重要。当前旋风分离器压降模型存在建模时间较长和预测精度较差的问题,为此采用极限学习机(Extreme learning machine,ELM)对旋风分离器压降进行了建模,并引入粒子群优化(Particle swarm optimization,PSO)算法对ELM输入层到隐含层连接权值和阈值进行了优化,以降低ELM对隐含层节点数的需求,提高模型准确度和稳定性。研究表明,优化结果较标准ELM降低了对隐含层节点数的需求,模型测试集R2和MSE分别为0.9978和2.443×10^(-4),运行时间为15.74 s,相比标准ELM模型、统计模型和人工神经网络模型,所建基于PSO-ELM的旋风分离器压降模型有更好的泛化能力和鲁棒性,极大地缩短了预测时间。PSO-ELM建模算法可以作为一种有效的方法,为旋风分离器性能分析提供指导。 展开更多
关键词 极限学习 粒子优化算法 旋风分离器 建模 压降
下载PDF
基于核极限学习机的下肢关节力矩预测方法
20
作者 宋永献 王祥祥 +3 位作者 李媛媛 夏文豪 李豪 宋文泽 《科学技术与工程》 北大核心 2024年第11期4599-4606,共8页
针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将... 针对极限学习机(extreme learning machine,ELM)预测下肢关节力矩时,随机初始化输入权重和偏置影响模型准确度问题,提出一种基于核极限学习机(kernel based extreme learning machine,KELM)的下肢康复机器人关节力矩预测方法。该方法将高斯核函数与ELM相融合,并采用遗传算法(genetic algorithm,GA)与粒子群优化(particle swarm optimization,PSO)结合的基因粒子群GAPSO对KELM的参数进行优化。首先,采集1位在跑步机上以0.4、0.5、0.6、0.7和0.8 m/s等5个不同速度行走的右下肢偏瘫患者运动数据并对数据进行预处理;其次,通过GAPSO对KELM进行优化,获得最优正则化系数C和核函数宽度参数S,将输出关节力矩与反向生物力学分析计算的关节作比较;最后,利用均方根误差(root mean square error,RMSE)和相关系数P来评价算法优越性。实验结果表明,基于GAPSO优化后的KELM(GAPSO-KELM)算法相对于PSO-KELM算法、KELM算法和ELM算法的平均最大均方根误差分别降低14%、18%、28%,且P除了0.8 m/s右侧踝关节内外翻是0.79外,其余P最小是0.84,GAPSO-KELM算法进一步提高预测精度,使其为康复治疗提供更有效的算法支持。 展开更多
关键词 高斯核函数 极限学习 粒子优化算法 遗传算法 均方根误差 相关系数
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部