为了实现对环境音频信号及其相关数据的自动分析,提出了一种环境音频数据分类方法。分类过程中,首先用短时平均幅度对音频数据进行有效分段;然后,计算分段音频数据的长度和平均过零率;最后,计算并生成一个分段音频数据的Mel频率倒谱系数...为了实现对环境音频信号及其相关数据的自动分析,提出了一种环境音频数据分类方法。分类过程中,首先用短时平均幅度对音频数据进行有效分段;然后,计算分段音频数据的长度和平均过零率;最后,计算并生成一个分段音频数据的Mel频率倒谱系数(MFCC)和一阶差分Mel频率倒谱系数(△MFCC)特征参数。分类操作上,根据有效分段的长度和平均过零率确定分类搜索的范围,并在局部范围内采用DTW(Dynamic Time Warping,动态时间规整)分类算法。实验结果验证了该方法对各种环境音频数据分类的有效性。展开更多
文摘为了实现对环境音频信号及其相关数据的自动分析,提出了一种环境音频数据分类方法。分类过程中,首先用短时平均幅度对音频数据进行有效分段;然后,计算分段音频数据的长度和平均过零率;最后,计算并生成一个分段音频数据的Mel频率倒谱系数(MFCC)和一阶差分Mel频率倒谱系数(△MFCC)特征参数。分类操作上,根据有效分段的长度和平均过零率确定分类搜索的范围,并在局部范围内采用DTW(Dynamic Time Warping,动态时间规整)分类算法。实验结果验证了该方法对各种环境音频数据分类的有效性。