A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to...A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.展开更多
General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any obj...General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any object from the others, Moreover, this algodthm can only be used in the simple environment since it is very sensitive to noise. In tinter to solve these problems. This paper proposes an extended active contour algorithm based on a color variance. In complex images, the color variance energy as the image energy is introduced into the general active contour algorithm. Experimental results show that the proposed active contour algorithm is very effective in various environments.展开更多
To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method a...To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.展开更多
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat...A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.展开更多
Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution te...Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.展开更多
Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been w...Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.展开更多
A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characterist...A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characteristic of phase error components contained in image pixels and estimates the phase error using the weighted least-squares(WLS) filter. Actually, this sort of method can be classified as autofocus algorithm which was generally applied in airborne SAR 2-D imaging to compensate the phase error introduced by airplane's nonideal motion. Real data processing, which is relevant to Honda center and Angel stadium of Anaheim test-sites and acquired by Envisat-ASAR during the period from June 2004 to October 2007, was carried out to evaluate this WLS estimation algorithm. Experimental results show that the phase error estimated from WLS filter is very accurate and the focusing quality along NSR dimension is improved prominently via phase correction, which verifies the practicability of this new method.展开更多
To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was ...To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.展开更多
Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed contr...Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.展开更多
This paper applies a difference scheme to a singularly perturbed problem. The authors provide two algorithms on moving mesh methods by using Richardson extrapolation which can improve the accuracy of numerical solutio...This paper applies a difference scheme to a singularly perturbed problem. The authors provide two algorithms on moving mesh methods by using Richardson extrapolation which can improve the accuracy of numerical solution. In traditional algorithms of moving meshes, the initial mesh is a uniform mesh. The authors change it to Bakhvalov-Shishkin mesh, and prove that it improves efficiency by numerical experiments. Finally, the results of the two algorithms are analyzed.展开更多
Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering eco...Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering economy as the main system and the steering road feel, the steering flexibility and the mechanic character of the steering sensors as the subsystems. Considering the coupled relationship of each discipline, the main system is optimized by the multi-island algorithm and the subsystems are optimized by the sequential quadratic programming algorithm. The simulation results show that the steering economy can be optimized by the collaborative optimization, and that the system can get good steering road feel, good steering flexibility and good mechanic character of the steering sensors.展开更多
基金Supported by the National Natural Science Foundation of China (20506003, 20776042) and the National High-Tech Research and Development Program of China (2007AA04Z 164).
文摘A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters' self-adaptation. The .performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm ~nd-other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury. (Hg) oxidation in flue gas, and satisfactory results are obtained.
基金supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD),the MKE(The Ministry of knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(NIPA-2009-(C1090-0902-0007))
文摘General active contour algorithm, which uses the intensity of the image, has been used to actively segment objects. Because the objects have a similar intensity but different colors, it is difficult to segment any object from the others, Moreover, this algodthm can only be used in the simple environment since it is very sensitive to noise. In tinter to solve these problems. This paper proposes an extended active contour algorithm based on a color variance. In complex images, the color variance energy as the image energy is introduced into the general active contour algorithm. Experimental results show that the proposed active contour algorithm is very effective in various environments.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2007AA041901 )the National Natural Science Foundation of China ( No. 50775117 )+1 种基金the National S&T Major Project ( No. 2009XZ04001-025 )the Technology Innovation Fund of AVIC ( No.2009E 13224 )
文摘To guarantee the accuracy of error analysis and evaluate the manufacturing tolerance s influence,anumerical error analysis method for parallel kinematic machines (PKMs) is presented in this paper.Quasi-Newton method and genetic algorithm are introduced for the forward kinematic solution.Based onthe inverse and forward kinematic solutions,the end-effector s error calculation procedure is developed.To solve the accuracy problem caused by the length and angular parameters' different units,a normalizationmethod is proposed based on the manufacturing tolerance.Comparison between the error analysis resultscalculated by the traditional method and the numerical method for a 4RRR PKM shows that,this numericalerror analysis method is more accurate,simpler,and can evaluate the machine s real error basedon the manufacturing tolerance.
基金Project(2013CB733605)supported by the National Basic Research Program of ChinaProject(21176073)supported by the National Natural Science Foundation of China
文摘A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application.
基金Supported by the National Natural Science Foundation of China (60804027, 61064003) and Fuzhou University Research Foundation (FZU-02335, 600338 and 600567).
文摘Determination of the optimal model parameters for biochemical systems is a time consuming iterative process. In this study, a novel hybrid differential evolution (DE) algorithm based on the differential evolution technique and a local search strategy is developed for solving kinetic parameter estimation problems. By combining the merits of DE with Gauss-Newton method, the proposed hybrid approach employs a DE algorithm for identifying promising regions of the solution space followed by use of Gauss-Newton method to determine the optimum in the identified regions. Some well-known benchmark estimation problems are utilized to test the efficiency and the robustness of the proposed algorithm compared to other methods in literature. The comparison indicates that the present hybrid algorithm outperforms other estimation techniques in terms of the global searching ability and the con- vergence speed. Additionally, the estimation of kinetic model parameters for a feed batch fermentor is carried out to test the applicability of the proposed algorithm. The result suggests that the method can be used to estimate suitable values of model oarameters for a comolex mathematical model.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(Key Program:U1162202)+2 种基金the National Science Fund for Outstanding Young Scholars(61222303)the National Natural Science Foundation of China(61174118,21206037)Shanghai Leading Academic Discipline Project(B504)
文摘Two general approaches are adopted in solving dynamic optimization problems in chemical processes, namely, the analytical and numerical methods. The numerical method, which is based on heuristic algorithms, has been widely used. An approach that combines differential evolution (DE) algorithm and control vector parameteri- zation (CVP) is proposed in this paper. In the proposed CVP, control variables are approximated with polynomials based on state variables and time in the entire time interval. Region reduction strategy is used in DE to reduce the width of the search region, which improves the computing efficiency. The results of the case studies demonstrate the feasibility and efficiency of the oroposed methods.
基金Projects(41271459)supported by the National Natural Science Foundation of China
文摘A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characteristic of phase error components contained in image pixels and estimates the phase error using the weighted least-squares(WLS) filter. Actually, this sort of method can be classified as autofocus algorithm which was generally applied in airborne SAR 2-D imaging to compensate the phase error introduced by airplane's nonideal motion. Real data processing, which is relevant to Honda center and Angel stadium of Anaheim test-sites and acquired by Envisat-ASAR during the period from June 2004 to October 2007, was carried out to evaluate this WLS estimation algorithm. Experimental results show that the phase error estimated from WLS filter is very accurate and the focusing quality along NSR dimension is improved prominently via phase correction, which verifies the practicability of this new method.
基金Project(61273055) supported by the National Natural Science Foundation of ChinaProject(CX2010B012) supported by Hunan Provincial Innovation Foundation for Postgraduate Students, ChinaProject(B100302) supported by Innovation Foundation for Postgraduate Students of National University of Defense Technology, China
文摘To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.
基金Supported by the National High Technology Research and Development Programme of China(No.2015AA8082065)the National Natural Science Foundation of China(No.61205143)
文摘Dynamic characteristics and tracking precision are studied in the photoelectric tracking system and a linear active disturbance rejection control( LADRC) scheme is proposed for position loop. A current and speed controller is designed by a transfer function model,which is obtained by adaptive differential evolution. Model error,friction and nonlinear factor existing in position loop are treated as ‘disturbance',which is estimated and compensated by generalized proportional integral( GPI)observer. Comparative results are provided to demonstrate the remarkable performance of the proposed method. It turns out that the proposed scheme is successful and has superior features,such as quick dynamic response,low overshoot and high tracking precision. Furthermore,with the proposed method,friction is suppressed effectively.
基金This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University, Guang- dong Province Universities and Colleges Pearl River Scholar Funded Scheme (2008), and the National Natural Science Foundation of China under Grant No. 10971074.
文摘This paper applies a difference scheme to a singularly perturbed problem. The authors provide two algorithms on moving mesh methods by using Richardson extrapolation which can improve the accuracy of numerical solution. In traditional algorithms of moving meshes, the initial mesh is a uniform mesh. The authors change it to Bakhvalov-Shishkin mesh, and prove that it improves efficiency by numerical experiments. Finally, the results of the two algorithms are analyzed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51005115, 51205191, and 51005248)the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University+1 种基金the Research Foundation of National Engineering Laboratory for Electric Vehicles (Grant No. 2012-NELEV-03)the Science Fund of State Key Laboratory of Automotive Safety and Energy(Grant No. KF11202)
文摘Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering economy as the main system and the steering road feel, the steering flexibility and the mechanic character of the steering sensors as the subsystems. Considering the coupled relationship of each discipline, the main system is optimized by the multi-island algorithm and the subsystems are optimized by the sequential quadratic programming algorithm. The simulation results show that the steering economy can be optimized by the collaborative optimization, and that the system can get good steering road feel, good steering flexibility and good mechanic character of the steering sensors.