A soil survey was conducted in Zhangzhou City, an important agricultural region in south of the Fujian Province, China. 93 surface soil samples were collected in the paddy fields, vegetable lands, orchards and tea pla...A soil survey was conducted in Zhangzhou City, an important agricultural region in south of the Fujian Province, China. 93 surface soil samples were collected in the paddy fields, vegetable lands, orchards and tea plantations from Zhangzhou City. An additional soil profile was sampled in a paddy field as previous research had indicated high concentrations of organochlorine pesticides (OCPs) in the paddy fields. Dichlorodiphenyltrichloroethanes (DDTs) ranged from 0.64 78.07 ng g-1 dry weight and hexachlorocyclohexanes (HCHs) ranged from 0.72-30.16 ng g-1 dry weight in the surface soil of the whole study region. Ratios of a-HCH/-γ-HCH 〈 4 and o,p′-DDT/p,p′-DDT 〉 1 in all soil samples suggested that lindane and dicofol were widely applied in this region in the past. Concentrations of HCHs and DDTs in soils from the four land use types followed the orders: paddy fields 〉 vegetable lands 〉 tea plantations 〉 orchards and tea plantations 〉 orchards 〉 paddy fields 〉 vegetable lands, respectively. Analyses of the data showed no correlation (r 〈 0.1) between elevation and OCPs contents in paddy fields, orchards and vegetable lands, indicated no significantly different features in distribution of HCHs and DDTs in the soils from low lying plains and mountains and the unsystematic usage of OCPs, and highlighted the fragmented nature of agricultural production in Zhangzhou, as well as the reemission of OCPs from the soils, where high OCPs concentrations were found, in Longhai of Zhangzhou. In addition, no obvious relationship between the OCPs and total organic carbon (TOC) (r 〈 0.3) was observed in the soil profile. The mean contribution of dicofol in total DDTs was 66% in the whole Zhangzhou region. The approximate burdens of HCHs and DDTs in the surface layer of 0-20 em were 0.44 and 1.55 t, respectively. The storage of both HCHs and DDTs in soil surface layer (0-20 cm) accounts for 40% burden of the soil layer of 0 50 cm (1.10 t HCHs and 3.87 t DDTs), in which the highest concentrations of OCPs were observed in soil profile.展开更多
Di-(2-ethylhexyl) phthalate(DEHP) is a high-molecular-weight phthalate ester(PAE) that has been widely used in the manufacture of polyvinylchloride and contributes to environmental pollution.The objectives of the pres...Di-(2-ethylhexyl) phthalate(DEHP) is a high-molecular-weight phthalate ester(PAE) that has been widely used in the manufacture of polyvinylchloride and contributes to environmental pollution.The objectives of the present study were to isolate a DEHP degrader that can utilize DEHP as a carbon source and to investigate its capacity to biodegrade DEHP in both liquid culture and soil.A bacterial strain WJ4 was isolated from an intensively managed vegetable soil,which was contaminated with PAEs.The strain WJ4 was affiliated to the genus Rhodococcus and was able to remove DEHP from soil effectively.A period of only 7 d was required to degrade about 96.4%of DEHP(200 mg L^(-1)) in the liquid culture,and more than 55%of DEHP(1.0 g kg^(-1)) in the artificially contaminated soil was removed within 21 d.Furthermore,Rhodococcus sp.strain WJ4 had a strong ability to degrade DEHP without additional nutrients in liquid minimal medium culture and DEHP-contaminated soil and to degrade the homologue of DEHP in both liquid culture and soil.Strain WJ4 represents a novel tool for removing PAEs from contaminated soils and it may have great potential for application in the remediation of environmental pollution by PAEs.展开更多
基金Supported by the National Natural Science Foundation of China(No.41073070)the Research Fund for the Doctoral Program of Higher Education of China(No.20090145110004)
文摘A soil survey was conducted in Zhangzhou City, an important agricultural region in south of the Fujian Province, China. 93 surface soil samples were collected in the paddy fields, vegetable lands, orchards and tea plantations from Zhangzhou City. An additional soil profile was sampled in a paddy field as previous research had indicated high concentrations of organochlorine pesticides (OCPs) in the paddy fields. Dichlorodiphenyltrichloroethanes (DDTs) ranged from 0.64 78.07 ng g-1 dry weight and hexachlorocyclohexanes (HCHs) ranged from 0.72-30.16 ng g-1 dry weight in the surface soil of the whole study region. Ratios of a-HCH/-γ-HCH 〈 4 and o,p′-DDT/p,p′-DDT 〉 1 in all soil samples suggested that lindane and dicofol were widely applied in this region in the past. Concentrations of HCHs and DDTs in soils from the four land use types followed the orders: paddy fields 〉 vegetable lands 〉 tea plantations 〉 orchards and tea plantations 〉 orchards 〉 paddy fields 〉 vegetable lands, respectively. Analyses of the data showed no correlation (r 〈 0.1) between elevation and OCPs contents in paddy fields, orchards and vegetable lands, indicated no significantly different features in distribution of HCHs and DDTs in the soils from low lying plains and mountains and the unsystematic usage of OCPs, and highlighted the fragmented nature of agricultural production in Zhangzhou, as well as the reemission of OCPs from the soils, where high OCPs concentrations were found, in Longhai of Zhangzhou. In addition, no obvious relationship between the OCPs and total organic carbon (TOC) (r 〈 0.3) was observed in the soil profile. The mean contribution of dicofol in total DDTs was 66% in the whole Zhangzhou region. The approximate burdens of HCHs and DDTs in the surface layer of 0-20 em were 0.44 and 1.55 t, respectively. The storage of both HCHs and DDTs in soil surface layer (0-20 cm) accounts for 40% burden of the soil layer of 0 50 cm (1.10 t HCHs and 3.87 t DDTs), in which the highest concentrations of OCPs were observed in soil profile.
基金supported by the National Environmental Protection Special Funds for Scientific Research on Public Causes in China(Nos.201109018 and 2010467016)Jiangsu Provincial Postdoctoral Fund of China(No.1202050C)
文摘Di-(2-ethylhexyl) phthalate(DEHP) is a high-molecular-weight phthalate ester(PAE) that has been widely used in the manufacture of polyvinylchloride and contributes to environmental pollution.The objectives of the present study were to isolate a DEHP degrader that can utilize DEHP as a carbon source and to investigate its capacity to biodegrade DEHP in both liquid culture and soil.A bacterial strain WJ4 was isolated from an intensively managed vegetable soil,which was contaminated with PAEs.The strain WJ4 was affiliated to the genus Rhodococcus and was able to remove DEHP from soil effectively.A period of only 7 d was required to degrade about 96.4%of DEHP(200 mg L^(-1)) in the liquid culture,and more than 55%of DEHP(1.0 g kg^(-1)) in the artificially contaminated soil was removed within 21 d.Furthermore,Rhodococcus sp.strain WJ4 had a strong ability to degrade DEHP without additional nutrients in liquid minimal medium culture and DEHP-contaminated soil and to degrade the homologue of DEHP in both liquid culture and soil.Strain WJ4 represents a novel tool for removing PAEs from contaminated soils and it may have great potential for application in the remediation of environmental pollution by PAEs.