The chemoselective C-and O-prenylation of cyclic 1,3-diketones was achieved by tuning the prenyl source and catalyst.In the presence of the solid acid Nafion,the coupling of 1,3-cyclohexanediones with isoprene gave C-...The chemoselective C-and O-prenylation of cyclic 1,3-diketones was achieved by tuning the prenyl source and catalyst.In the presence of the solid acid Nafion,the coupling of 1,3-cyclohexanediones with isoprene gave C-prenylated 5-chromenones.Alternatively,using prenol as the substrate with the Lewis acid Al Cl3 as the catalyst resulted in the exclusive O-prenylation of 1,3-cyclohexanediones.Notably,the resulting products could easily undergo aromatization to deliver prenylated resorcinols that are otherwise difficult to prepare.Our methodology is highly selective,atom-economical,operationally simple,easily scalable,and has potential applications throughout organic synthesis.展开更多
Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]he...Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.展开更多
文摘The chemoselective C-and O-prenylation of cyclic 1,3-diketones was achieved by tuning the prenyl source and catalyst.In the presence of the solid acid Nafion,the coupling of 1,3-cyclohexanediones with isoprene gave C-prenylated 5-chromenones.Alternatively,using prenol as the substrate with the Lewis acid Al Cl3 as the catalyst resulted in the exclusive O-prenylation of 1,3-cyclohexanediones.Notably,the resulting products could easily undergo aromatization to deliver prenylated resorcinols that are otherwise difficult to prepare.Our methodology is highly selective,atom-economical,operationally simple,easily scalable,and has potential applications throughout organic synthesis.
文摘Because of multiple potential reaction sites and variable oxidation depths,oxidation of cyclohexene can lead to a mixture of products with different oxidation states and functional groups,such as 7-oxabicyclo[4.1.0]heptane,trans/cis-cyclohexane-1,2-diol,cyclohex-2-en-1-ol,cyclohex-2-en-1-one,and even adipic acid.These products are broadly and abundantly used intermediates in the chemical industry;therefore,controllable oxidation reactions for cyclohexene that can selectively afford the targeted products are synthetically valuable for applications in both the academy and industry,thus becoming the aim of synthetic and catalytic chemists in the field.Many reports on selective oxidation of cyclohexene have recently appeared in the literature because of its significance.This short review summarizes the recent advances on this subject,and the contents are mainly classified based on the chosen oxidants.We hope that this review can provide a useful guide for controllable and selective catalytic oxidation of cyclohexene for interested readers from both the academy and industry.