Recent advances in effective antimicrobial prophylactic strategies have led to a decline in the incidence of opportunistic infections in liver transplant recipients. However, morbidity and mortality due to infectious ...Recent advances in effective antimicrobial prophylactic strategies have led to a decline in the incidence of opportunistic infections in liver transplant recipients. However, morbidity and mortality due to infectious diseases remain as major problems. Bacterial infections occurring early after transplant are mainly related to the technical aspects of the procedure. By contrast, after the first postoperative days and beyond, the nature and variety of infectious complications change. Opportunistic bacterial infections are uncommon after 6 mo in patients receiving stable and reduced maintenance doses of immunosuppression with good graft function and little is documented about these cases in the literature. Transplant recipients may be more susceptible to some pathogens, such as the Nocardia species, Legionella species, Listeria monocytogenes , Mycoplasma species, Salmonella species or Rhodococcus equi. Respiratory infections due to capsulated bacteria, such as Streptococcus pneumoniae and Haemophilus intTuenza, can be life- threatening if not promptly treated in this population. These late bacterial infections may be very difficult to recognize and treat in this population. In this article, we review what has been described in the literature with regards to late bacterial infections following liver transplantation.展开更多
Dengue fever is caused by the dengue virus and transmitted by Aedes mosquitoes.A promising avenue for eradicating the disease is to infect the wild aedes population with the bacterium Wolbachia driven by cytoplasmic i...Dengue fever is caused by the dengue virus and transmitted by Aedes mosquitoes.A promising avenue for eradicating the disease is to infect the wild aedes population with the bacterium Wolbachia driven by cytoplasmic incompatibility(CI).When releasing Wolbachia infected mosquitoes for population replacement,it is essential to not ignore the spatial inhomogeneity of wild mosquito distribution.In this paper,we develop a model of reaction-diffusion system to investigate the infection dynamics in natural areas,under the assumptions supported by recent experiments such as perfect maternal transmission and complete CI.We prove non-existence of inhomogeneous steady-states when one of the diffusion coefficients is sufficiently large,and classify local stability for constant steady states.It is seen that diffusion does not change the criteria for the local stabilities.Our major concern is to determine the minimum infection frequency above which Wolbachia can spread into the whole population of mosquitoes.We find that diffusion drives the minimum frequency slightly higher in general.However,the minimum remains zero when Wolbachia infection brings overwhelming fitness benefit.In the special case when the infection does not alter the longevity of mosquitoes but reduces the birth rate by half,diffusion has no impact on the minimum frequency.展开更多
文摘Recent advances in effective antimicrobial prophylactic strategies have led to a decline in the incidence of opportunistic infections in liver transplant recipients. However, morbidity and mortality due to infectious diseases remain as major problems. Bacterial infections occurring early after transplant are mainly related to the technical aspects of the procedure. By contrast, after the first postoperative days and beyond, the nature and variety of infectious complications change. Opportunistic bacterial infections are uncommon after 6 mo in patients receiving stable and reduced maintenance doses of immunosuppression with good graft function and little is documented about these cases in the literature. Transplant recipients may be more susceptible to some pathogens, such as the Nocardia species, Legionella species, Listeria monocytogenes , Mycoplasma species, Salmonella species or Rhodococcus equi. Respiratory infections due to capsulated bacteria, such as Streptococcus pneumoniae and Haemophilus intTuenza, can be life- threatening if not promptly treated in this population. These late bacterial infections may be very difficult to recognize and treat in this population. In this article, we review what has been described in the literature with regards to late bacterial infections following liver transplantation.
基金supported by National Natural Science Foundation of China(GrantNos.11471085 and 91230104)Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1226)+1 种基金Program for Yangcheng Scholars in Guangzhou(Grant No.12A003S)Natural Science Foundation of USA(Grant No.0531898)
文摘Dengue fever is caused by the dengue virus and transmitted by Aedes mosquitoes.A promising avenue for eradicating the disease is to infect the wild aedes population with the bacterium Wolbachia driven by cytoplasmic incompatibility(CI).When releasing Wolbachia infected mosquitoes for population replacement,it is essential to not ignore the spatial inhomogeneity of wild mosquito distribution.In this paper,we develop a model of reaction-diffusion system to investigate the infection dynamics in natural areas,under the assumptions supported by recent experiments such as perfect maternal transmission and complete CI.We prove non-existence of inhomogeneous steady-states when one of the diffusion coefficients is sufficiently large,and classify local stability for constant steady states.It is seen that diffusion does not change the criteria for the local stabilities.Our major concern is to determine the minimum infection frequency above which Wolbachia can spread into the whole population of mosquitoes.We find that diffusion drives the minimum frequency slightly higher in general.However,the minimum remains zero when Wolbachia infection brings overwhelming fitness benefit.In the special case when the infection does not alter the longevity of mosquitoes but reduces the birth rate by half,diffusion has no impact on the minimum frequency.