Research on the permeability and pressure distribution characteristics of the roadway surrounding rock in the excavation damaged zone(EDZ) is beneficial for the development of gas control technology. In this study, an...Research on the permeability and pressure distribution characteristics of the roadway surrounding rock in the excavation damaged zone(EDZ) is beneficial for the development of gas control technology. In this study, analytical solutions of stress and strain of the roadway surrounding rock were obtained, in which the creep deformation and strain softening were considered. Using the MTS815 rock mechanics testing system and a gas permeability testing system, permeability tests were conducted in the complete stress-strain process, and the evolution characteristics of permeability and strain were studied over the whole loading process. Based on the analytical solutions of stress and strain and the governing equation of gas seepage flow, this paper proposes a hydro-mechanical(HM) model, which considers three different zones around the roadway. Then the gas flow process in the roadway surrounding rock in three different zones was simulated according to the engineering geological conditions, thus obtaining the permeability and pressure distribution characteristics of the roadway surrounding rock in three different zones. These results show that the surrounding rock around the roadway can be divided into four regions-the full flow zone(FFZ), flow-shielding zone(FSZ), transitive flow zone(TFZ), and in-situ rock flow zone(IRFZ). These results could provide theoretical guidance for the improvement of gas extraction and gas control technology.展开更多
Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was ...Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.展开更多
In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating t...In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.展开更多
基金financially supported by the Natural Science Foundation of Jiangsu Province,China(No.BK20140189)the Postdoctoral Science Foundation of China(No.2014M550315)
文摘Research on the permeability and pressure distribution characteristics of the roadway surrounding rock in the excavation damaged zone(EDZ) is beneficial for the development of gas control technology. In this study, analytical solutions of stress and strain of the roadway surrounding rock were obtained, in which the creep deformation and strain softening were considered. Using the MTS815 rock mechanics testing system and a gas permeability testing system, permeability tests were conducted in the complete stress-strain process, and the evolution characteristics of permeability and strain were studied over the whole loading process. Based on the analytical solutions of stress and strain and the governing equation of gas seepage flow, this paper proposes a hydro-mechanical(HM) model, which considers three different zones around the roadway. Then the gas flow process in the roadway surrounding rock in three different zones was simulated according to the engineering geological conditions, thus obtaining the permeability and pressure distribution characteristics of the roadway surrounding rock in three different zones. These results show that the surrounding rock around the roadway can be divided into four regions-the full flow zone(FFZ), flow-shielding zone(FSZ), transitive flow zone(TFZ), and in-situ rock flow zone(IRFZ). These results could provide theoretical guidance for the improvement of gas extraction and gas control technology.
基金Supported by the National Natural Science Fundation of China (50674045)the National "973" Planning Project(2007CB209403)
文摘Through the description of the deformational features of the surrounding rockaround high stress engineering soft rock roadways,the coupling stabilization principle ofinner and outer structures in surrounding rock was put forward.The supporting principlesof high stress engineering soft rock roadway (high resistance and yielding support,timelysupport,high strength and high stiffness supports) were proposed,which were applied inengineering practices,and obtained better achievements.
基金Projects 2006CB202200 supported by the Special Funds for the Major State Basic Research ProjectIRT0656 by the Innovative Team Development Project of the State Educational Ministry of China
文摘In order to capture the mechanism of roadway instability in deep mines, a new approach of Physically Finite Elemental Slab Assemblage (PFESA) is proposed in order to construct a large-scale physical model simulating the geologically horizontal strata. We carried out physical modeling on the deformation and failure processes of roadways subjected to a plane loading scheme. Our laboratory tests were based on work which incorporated infrared (IR) detection, IR radiation temperature (IRT) statistics, image feature extraction and 2D Fourier transformation, from resulting thermographies. The IRT characterizes the mechanical responses from the roadway after loading with two stages, i.e., IRT evolving at higher levels corresponded to shallow mining (≤500 m) during which the roadway deformed gradually (referred to as the "steady deformation stage"); IRT evolving in a quasi-cyclical manner with multiple peaks corresponded to deep mining (800–2600 m), in which the failure mode for the roadway are dominated by breakage and collapse (called the "unsteady deformation stage"). The IR images and 2D Fourier spectra illustrate detailed information in terms of initiation, nucleation and coalescence of the damage to rock masses and the eventual failure of roadways subject to external loading.