The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the...The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the surrounding rock strength, lowering the rock mass stress and selecting the reasonable supporting technology. The research results are elucidated, including the distribution of the surrounding rock plastic zone, the movement and damage of the surrounding rock under the dynamic pressure, controlling the floor heave through reinforcing the roadway walls and corners, the new route to develop the roadway metal supporting technique, the key theory and technique for the bolt supporting in the coal roadway, the performance and prospect of the ZKD high water content quick setting material, and so on. Finally, some personally views are put forward about the roadway metal supporting, bolt supporting, new material and the stress relief under the high stress condition.展开更多
In view of the stress concentration problem left by the joint coal seams mining since the reservation of the coal pillar, it was proposed that non-pillar mining technology be used in Dongrong No.2 coal mine. The numer...In view of the stress concentration problem left by the joint coal seams mining since the reservation of the coal pillar, it was proposed that non-pillar mining technology be used in Dongrong No.2 coal mine. The numerical simulation software FLAG2D was used to draw the relationship between surrounding rock deformation of roadway driving along next goaf and the size of the coal pillar, so the safety and suitable position of roadway was determined. The distribution of lateral abutment pressure was measured by using the ZYJ-30 drilling stress gauge in the coal wall. The conclusions of the numerical simulation were verified.展开更多
The loading on U-steel yieldable support cannot be organically combined withthe law of strata behaviors from the surrounding rocks of roadway. In order to effectivelysolve the problem, U-steel yieldable support with b...The loading on U-steel yieldable support cannot be organically combined withthe law of strata behaviors from the surrounding rocks of roadway. In order to effectivelysolve the problem, U-steel yieldable support with backfill material and the performancerequirements of backfill material were analyzed on the basis of structural mechanics. Themechanical properties of backfill material selected were tested in the laboratory, and thetest results show that the ratio of the backfill material complies with the requirements ofbackfill technology; it can effectively optimize the relationship between the support and thesurrounding rock, and the filling layer can avoid the partial stress concentration and fullyimprove the support performance. Compared with U-steel yieldable support with ganguefilling, the filed application shows that the supporting result of U-steel yieldable supportwith backfill technology is satisfactory, the stress on U-steel yieldable support with backfilltechnology decreases greatly and distributes uniformly, convergence of the surroundingrock of roadway is decreased by more than 50%, and the surrounding rocks of roadwayare controlled effectively.展开更多
文摘The basic characteristics of the soft rock roadway under the dynamic pressure are analyzed. At the same time, the three fundamental approaches for controlling the surrounding rock are proposed, which are improving the surrounding rock strength, lowering the rock mass stress and selecting the reasonable supporting technology. The research results are elucidated, including the distribution of the surrounding rock plastic zone, the movement and damage of the surrounding rock under the dynamic pressure, controlling the floor heave through reinforcing the roadway walls and corners, the new route to develop the roadway metal supporting technique, the key theory and technique for the bolt supporting in the coal roadway, the performance and prospect of the ZKD high water content quick setting material, and so on. Finally, some personally views are put forward about the roadway metal supporting, bolt supporting, new material and the stress relief under the high stress condition.
文摘In view of the stress concentration problem left by the joint coal seams mining since the reservation of the coal pillar, it was proposed that non-pillar mining technology be used in Dongrong No.2 coal mine. The numerical simulation software FLAG2D was used to draw the relationship between surrounding rock deformation of roadway driving along next goaf and the size of the coal pillar, so the safety and suitable position of roadway was determined. The distribution of lateral abutment pressure was measured by using the ZYJ-30 drilling stress gauge in the coal wall. The conclusions of the numerical simulation were verified.
文摘The loading on U-steel yieldable support cannot be organically combined withthe law of strata behaviors from the surrounding rocks of roadway. In order to effectivelysolve the problem, U-steel yieldable support with backfill material and the performancerequirements of backfill material were analyzed on the basis of structural mechanics. Themechanical properties of backfill material selected were tested in the laboratory, and thetest results show that the ratio of the backfill material complies with the requirements ofbackfill technology; it can effectively optimize the relationship between the support and thesurrounding rock, and the filling layer can avoid the partial stress concentration and fullyimprove the support performance. Compared with U-steel yieldable support with ganguefilling, the filed application shows that the supporting result of U-steel yieldable supportwith backfill technology is satisfactory, the stress on U-steel yieldable support with backfilltechnology decreases greatly and distributes uniformly, convergence of the surroundingrock of roadway is decreased by more than 50%, and the surrounding rocks of roadwayare controlled effectively.