Let S be an antinegative commutative semiring having no zero divisions or finite general Boolean Algebra and μ(S) the set of n×n matrices over S. In this paper we characterize the structure of the senigroup n,...Let S be an antinegative commutative semiring having no zero divisions or finite general Boolean Algebra and μ(S) the set of n×n matrices over S. In this paper we characterize the structure of the senigroup n,(S) of linear operators on μn,(S) that strongly preserve the M-P inverses of matrices.展开更多
基金国家自然科学基金资助项目(6060303060773099+5 种基金6087314960973088)国家高技术研究发展计划("863"计划)基金资助项目(2006AA10Z2452006AA10A309)欧盟基金资助项目(Bridging the Gap155776-EM-1-2009-1-IT-ERAMUNDUS-ECW-L12)~~
文摘Let S be an antinegative commutative semiring having no zero divisions or finite general Boolean Algebra and μ(S) the set of n×n matrices over S. In this paper we characterize the structure of the senigroup n,(S) of linear operators on μn,(S) that strongly preserve the M-P inverses of matrices.