A fiber Bragg grating strain sensor,whose reflection bandwidth is insensitive to temperature,is presented.The cross-sec-tional area is designed to change linearly.Under axial stress,there is a linear relationship betw...A fiber Bragg grating strain sensor,whose reflection bandwidth is insensitive to temperature,is presented.The cross-sec-tional area is designed to change linearly.Under axial stress,there is a linear relationship between stress and average strain.Experimental results show that when temperature increases,reflection center wavelength shifts to longer wavelength,and there is a good linear relationship between center wavelength and temperature.When stress increases,reflection center wavelength shifts to longer wavelength,and reflection bandwidth increases.There are good linear relationships between reflection center wavelength and stress as well as reflection bandwidth and stress.展开更多
A novel fiber Bragg grating(FBG) sensor with simultaneous sensing of displacement and temperature is presented.The FBG is affixed on the cantilever inclinedly.The midpoint of FBG exactly coincides with the zero strain...A novel fiber Bragg grating(FBG) sensor with simultaneous sensing of displacement and temperature is presented.The FBG is affixed on the cantilever inclinedly.The midpoint of FBG exactly coincides with the zero strain layer of a rectangular beam.The vertical displacement can be measured by the broadened bandwidth of FBG as the bandwidth is insensitive to temperature,while the temperature can be measured by the center wavelength shift as the wavelength shift is insensitive to vertical displacement.With 0.1 nm spectral resolution of the analyzer,sensitivities of bandwidth-displacement and center wavelength-temperature are 0.48 nm/mm and 0.05 nm/℃,resolutions are 0.2 mm and 2.0 ℃,and sensing ranges of displacement and temperature are up to 8.5 mm and 45℃ respectively.Experimental results match theoretical analyses very well.展开更多
基金supported by the National Natural Science Foundation of China(Nos.60837002and61177069)the Ph.D.Programs Foundation of Ministry of Education of China(No.20090009110003)the Fundamental Research Funds for the Central Universities(No.2011YJS214)
文摘A fiber Bragg grating strain sensor,whose reflection bandwidth is insensitive to temperature,is presented.The cross-sec-tional area is designed to change linearly.Under axial stress,there is a linear relationship between stress and average strain.Experimental results show that when temperature increases,reflection center wavelength shifts to longer wavelength,and there is a good linear relationship between center wavelength and temperature.When stress increases,reflection center wavelength shifts to longer wavelength,and reflection bandwidth increases.There are good linear relationships between reflection center wavelength and stress as well as reflection bandwidth and stress.
基金supported by the National High Technology Research and Development Program of China (No.2007AA03Z413)the National Natural Science Foundation of China (No.60727004)+3 种基金the Shaanxi Province "13115" Major Scientific and Technological Innovation Works Special Project (No.708087)the Major Science and Technology Project of Ministry of Education of China (No.Z08119)the Innovation Foundation of the Petro China (No. 2008D-5006-03-08)the Shaanxi Provincial Department of Education Project (No.09JS041)
文摘A novel fiber Bragg grating(FBG) sensor with simultaneous sensing of displacement and temperature is presented.The FBG is affixed on the cantilever inclinedly.The midpoint of FBG exactly coincides with the zero strain layer of a rectangular beam.The vertical displacement can be measured by the broadened bandwidth of FBG as the bandwidth is insensitive to temperature,while the temperature can be measured by the center wavelength shift as the wavelength shift is insensitive to vertical displacement.With 0.1 nm spectral resolution of the analyzer,sensitivities of bandwidth-displacement and center wavelength-temperature are 0.48 nm/mm and 0.05 nm/℃,resolutions are 0.2 mm and 2.0 ℃,and sensing ranges of displacement and temperature are up to 8.5 mm and 45℃ respectively.Experimental results match theoretical analyses very well.