Anthropogenic activities have caused the accumulation of heavy metals in the soil environment. Pollution of the soils significantly reduces environmental quality and affects human health. In many recent studies, magne...Anthropogenic activities have caused the accumulation of heavy metals in the soil environment. Pollution of the soils significantly reduces environmental quality and affects human health. In many recent studies, magnetic susceptibility ts have been used for pollution monitoring. The objective of this research was to determine the spatial variability of magnetic properties and selected heavy metals and the effect of land use on their variability in the surface soils of the Isfahan region, Central Iran. A total of 158 composite surface (0-5 cm) samples of calcareous soils were collected from an area of about 700 km2, located along a cross-border transect from Isfahan City to a steel plant, covering urban, industrial, agricultural, and uncultivated land uses. Concentrations of copper (Cu), zinc (Zn), lead (Pb), manganese (Mn), iron (Fe), nickel (Ni), chromium (Cr), and cobalt (Co) and magnetic parameters, magnetic susceptibility at low frequency (xlf), natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and isothermal remanent magnetization at the field of 100 mT (IRM100mT) and the backfield of 100 mT (IRM-100mT), were measured in all the soil samples. Results showed that magnetic susceptibility in the urban and industrial land topsoils (0-5 cm) samples was significantly higher than that in the agricultural and uncultivated land soils in the study area. Concentrations of Cu, Zn, Pb, Mn, and Fe were positively correlated with magnetic properties (xlf, IRM100mT, SIRM, IRM-100mT, and NRM), which could be attributed to their inputs from traffic emissions and industrial activities at the study sites. Ni and Cr concentrations showed significant negative correlations with magnetic properties. No significant correlation was found between Co concentration and magnetic parameters. The Tomlinson pollution load index (PLI) showed significant correlation with the magnetic properties (xlf, IRM100mT, SIRM, IRM-100mT, and NRM). The spatial distribution of the selected heavy metals and xlf in the study area suggested that activities at the urban and industrial land sites caused greater pollution as compared to that at the study sites of other land uses. The concentrations of Cu and Zn seemed to have been affected by anthropogenic sources, whereas Ni, Cr, and Co were mainly controlled by natural sources in the study area. Moreover, the concentrations of soil Pb and Fe in the study area could be affected by both lithologic and anthropogenic sources. The magnetic parameters appeared to be a proxy measure for the degree of heavy metal contamination and could be a potential method for the detection and mapping of contaminated soils.展开更多
In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific exam...In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.展开更多
基金Supported by the Isfahan University of Technology,Iran
文摘Anthropogenic activities have caused the accumulation of heavy metals in the soil environment. Pollution of the soils significantly reduces environmental quality and affects human health. In many recent studies, magnetic susceptibility ts have been used for pollution monitoring. The objective of this research was to determine the spatial variability of magnetic properties and selected heavy metals and the effect of land use on their variability in the surface soils of the Isfahan region, Central Iran. A total of 158 composite surface (0-5 cm) samples of calcareous soils were collected from an area of about 700 km2, located along a cross-border transect from Isfahan City to a steel plant, covering urban, industrial, agricultural, and uncultivated land uses. Concentrations of copper (Cu), zinc (Zn), lead (Pb), manganese (Mn), iron (Fe), nickel (Ni), chromium (Cr), and cobalt (Co) and magnetic parameters, magnetic susceptibility at low frequency (xlf), natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and isothermal remanent magnetization at the field of 100 mT (IRM100mT) and the backfield of 100 mT (IRM-100mT), were measured in all the soil samples. Results showed that magnetic susceptibility in the urban and industrial land topsoils (0-5 cm) samples was significantly higher than that in the agricultural and uncultivated land soils in the study area. Concentrations of Cu, Zn, Pb, Mn, and Fe were positively correlated with magnetic properties (xlf, IRM100mT, SIRM, IRM-100mT, and NRM), which could be attributed to their inputs from traffic emissions and industrial activities at the study sites. Ni and Cr concentrations showed significant negative correlations with magnetic properties. No significant correlation was found between Co concentration and magnetic parameters. The Tomlinson pollution load index (PLI) showed significant correlation with the magnetic properties (xlf, IRM100mT, SIRM, IRM-100mT, and NRM). The spatial distribution of the selected heavy metals and xlf in the study area suggested that activities at the urban and industrial land sites caused greater pollution as compared to that at the study sites of other land uses. The concentrations of Cu and Zn seemed to have been affected by anthropogenic sources, whereas Ni, Cr, and Co were mainly controlled by natural sources in the study area. Moreover, the concentrations of soil Pb and Fe in the study area could be affected by both lithologic and anthropogenic sources. The magnetic parameters appeared to be a proxy measure for the degree of heavy metal contamination and could be a potential method for the detection and mapping of contaminated soils.
基金supported by the Natural Science Foundation of Yunnan Province (Grant No. 2010CD031)the National Natural Science Foun-dation of China (Grant Nos. 50906035, 51066002 and U0937604)
文摘In this paper, we investigate the escape of Brownian particles and stochastic resonance (SR) with low-temperatures quantum fluctuations by using the quantum Smoluchowski equations at low-temperature. Two specific examples have been considered: one is the example of bistable system, and the other is the example of metastable system. The explicit expressions of the mean-first passage time (MFPT) and signal-to-noise ratio (SNR) for both specific examples are obtained, respectively. Based on the numerical computations, we compare the quantum case with its classical counterpart. Our research results show that: (i) the quantum effect accelerates the escape of the Brownian particle in comparison with the classical result and (ii) the quantum effect enhances the SR in the SNR as a function of β for a bistable system (i.e., β = 1/kBT, kB is the Boltzmann constant and T is the temperature), while for a metastable system, the β amplifies the quantum effects, and the quantum effect weakens the SNR as a function of β.