期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
活性流体流变行为的布朗动力学模拟研究 被引量:3
1
作者 许晓飞 童松豪 +4 位作者 张达 董超 刘凤霞 魏炜 刘志军 《力学学报》 EI CAS CSCD 北大核心 2021年第11期3071-3079,共9页
活性流体在用于开发新材料方面具有巨大潜力,满足这一需求就要定量掌握活性流体所表现的特殊力学行为,特别是流变行为.扩展布朗运动方程,建立自驱动活性粒子的运动模型,基于反向非平衡法确定活性流体的黏度,考察活性粒子体积分数、直行... 活性流体在用于开发新材料方面具有巨大潜力,满足这一需求就要定量掌握活性流体所表现的特殊力学行为,特别是流变行为.扩展布朗运动方程,建立自驱动活性粒子的运动模型,基于反向非平衡法确定活性流体的黏度,考察活性粒子体积分数、直行速度和转向扩散系数对活性流体流变行为的影响规律,确定活性流体特殊流变行为的形成机理.结果表明,活性流体的流变曲线可被划分为黏度下降区、过渡区和牛顿区;活性粒子体积分数越高,活性流体的非牛顿特性越显著,活性粒子的直行运动引起活性流体在低剪切速率区域黏度下降,直行运动和转向运动的耦合作用导致中剪切速率区域流变曲线非单调变化,活性粒子频繁发生转向运动会导致活性流体非牛顿特性受到抑制;活性流体的宏观流变学特性和粒子的涨落直接相关,活性粒子体积分数越高、直行速度越快和转向扩散系数越小,活性流体中活性粒子越容易产生显著的涨落;低剪切速率区域内活性粒子涨落明显,随着剪切速率增大,活性粒子的涨落逐渐被削弱,粒子的聚集结构不断被破坏,最终体系的流变行为类似一般被动流体. 展开更多
关键词 活性流体 流变学 布朗运动方程 黏度 布朗动力学模拟
下载PDF
带跳混合分数布朗运动下利差期权定价 被引量:14
2
作者 孙玉东 师义民 谭伟 《系统科学与数学》 CSCD 北大核心 2012年第11期1377-1385,共9页
在股票价格遵循带跳混合分数布朗运动过程假设下,得到了利差期权所满足的一般偏微分方程,并依据此偏微分方程获得了利差期权和标准欧式期权定价公式.推广了关于Black-Scholes期权定价的结论.
关键词 带跳混合分数布朗运动 利差期权 欧式期权 偏微分方程
原文传递
汽车零部件时变可靠性及其灵敏度分析 被引量:4
3
作者 张禄 纪威 +2 位作者 周炜 李文亮 任春晓 《公路交通科技》 CAS CSCD 北大核心 2015年第10期146-152,共7页
推导了一种考虑初始参数不确定性的一维布朗运动方程,构建了载荷和结构参数时变的模型。运用材料S-N特性求得剩余强度分布,结合应力-强度干涉理论,提出了一种既考虑初始参数及强度不确定性又考虑实际使用过程中不确定性的可靠性及其灵... 推导了一种考虑初始参数不确定性的一维布朗运动方程,构建了载荷和结构参数时变的模型。运用材料S-N特性求得剩余强度分布,结合应力-强度干涉理论,提出了一种既考虑初始参数及强度不确定性又考虑实际使用过程中不确定性的可靠性及其灵敏度分析模型。在此基础上,研究了汽车零部件结构参数、强度、载荷、可靠度及其灵敏度随时间的变化规律。以某汽车驱动桥半轴为例,计算了时变条件下驱动桥半轴可靠度、失效率及可靠性灵敏度的变化规律。 展开更多
关键词 汽车工程 汽车零部件 应力-强度干涉法 时变可靠性及灵敏度分析模型 一维布朗运动方程
下载PDF
汽车驱动桥半轴时变可靠性设计 被引量:1
4
作者 张禄 纪威 +1 位作者 李文亮 任春晓 《公路交通科技》 CAS CSCD 北大核心 2016年第4期149-152,158,共5页
针对汽车驱动桥半轴的初始参数不确定性及其在使用过程不确定性的影响,研究在此条件下半轴可靠性设计的问题。推导了一种考虑初始参数不确定性的一维布朗微分方程,并构建了时变模型。结合应力-强度干涉理论,提出了一种考虑驱动桥半轴初... 针对汽车驱动桥半轴的初始参数不确定性及其在使用过程不确定性的影响,研究在此条件下半轴可靠性设计的问题。推导了一种考虑初始参数不确定性的一维布朗微分方程,并构建了时变模型。结合应力-强度干涉理论,提出了一种考虑驱动桥半轴初始参数不确定条件下结构参数、载荷及强度随时间演变的可靠性设计方法。结果表明:不考虑驱动桥半轴初始参数不确定性与使用过程不确定性的可靠性设计偏向于不安全,采用本文方法计算得到驱动桥半轴直径的均值为64.78 mm时满足时变可靠性设计要求。 展开更多
关键词 汽车工程 时变可靠性设计 应力-强度干涉法 驱动桥半轴 初始参数不确定性 实际使用 一维布朗运动方程
下载PDF
Brownian Ratchet Driven by a Rocking Forcing with Broken Temporal Symmetry
5
作者 LIUFeng-Zhi LIXiao-Wen 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第2期173-176,共4页
The ratchet motion of a Brownian particle in a symmetric periodic potential under a rocking force thatbreaks the temporal symmetry is studied. As long as the relaxation time in the thermal background is much shorter t... The ratchet motion of a Brownian particle in a symmetric periodic potential under a rocking force thatbreaks the temporal symmetry is studied. As long as the relaxation time in the thermal background is much shorter thanthe forcing period, the unidirectional transport can be analytically treated. By solving the Fokker-Planck equations, weget an analytical expression of the current. This result indicates that with an appropriate match between the potentialfield, the asymmetric ac force and the thermal noise, a net current can be achieved. The current versus thermal noiseexhibits a stochastic-resonance-like behavior. 展开更多
关键词 Brownian ratchet directed transport stochastic resonance Fokker-Planck equation
下载PDF
Effective Potential of a Two-State Model for Molecular Motor
6
作者 HANYing-Rong ZHAOTong-Jun +1 位作者 ZHAN-Yong YANWei-Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期377-381,共5页
We study force generation and motion of molecular motors using a simple two-state model in the paper.Asymmetric and periodic potential is adopted to describe the interaction between motor proteins and filaments that a... We study force generation and motion of molecular motors using a simple two-state model in the paper.Asymmetric and periodic potential is adopted to describe the interaction between motor proteins and filaments that are periodic and polar. The current and the slope of the effective potential as functions of the temperature and transition rates are calculated in the two-state model. The ratio of the slope of the effective potential to the current is also calculated. It is shown that the directed motion of motor proteins is relevant to the effective potential. The slope of the effective potential corresponds to an average force. The non-vanishing force therefore implies that detailed balance is broken in the process of transition between different states. 展开更多
关键词 Brownian particle directed motion Fokker-Planck equation effective potential detailed balance
下载PDF
Various Extensions of Original Born-Kramers-Slater Model for Reactions Kinetics Based on Brownian Motion and Fokker-Plank Equation Including 1D, 2D, 3D, and Multi-dimensional Approaches
7
作者 Michael Fundator 《Journal of Chemistry and Chemical Engineering》 2017年第3期90-94,共5页
Different extensions, such as Transition State theory of Eyring-Polanyi-Evans model of the original Born-Kramers-Slater Model for the Velocity of Chemical Reactions are discussed based on Smoluchowski and Fokker-Plank... Different extensions, such as Transition State theory of Eyring-Polanyi-Evans model of the original Born-Kramers-Slater Model for the Velocity of Chemical Reactions are discussed based on Smoluchowski and Fokker-Plank equations with various properties of Brownian motion and including 1-, 2-, 3-, and multi- dimensional models with applications in Neuroscience. 展开更多
关键词 Fokker-Plank equation transition state theory tunneling.
下载PDF
Stability of Linear Stochastic Differential Equations with Respect to Fractional Brownian Motion
8
作者 舒慧生 陈春丽 魏国亮 《Journal of Donghua University(English Edition)》 EI CAS 2009年第2期119-125,共7页
This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the ... This paper is concerned with the stochastically stability for the m-dimensional linear stochastic differential equations with respect to fractional Brownian motion (FBM) with Hurst parameter H ∈ (1/2, 1). On the basis of the pioneering work of Duncan and Hu, a Ito's formula is given. An improved derivative operator to Lyapunov functions is constructed, and the sufficient conditions for the stochastically stability of linear stochastic differential equations driven by FBM are established. These extend the stochastic Lyapunov stability theories. 展开更多
关键词 fractional Brownian motion Ito's formula stochastically stability improved derivative operator
下载PDF
FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS, LINEAR QUADRATIC STOCHASTIC OPTIMAL CONTROL AND NONZERO SUM DIFFERENTIAL GAMES 被引量:13
9
作者 WUZhen 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2005年第2期179-192,共14页
In this paper, we use the solutions of forward-backward stochastic differential equations to get the explicit form of the optimal control for linear quadratic stochastic optimal control problem and the open-loop Nash ... In this paper, we use the solutions of forward-backward stochastic differential equations to get the explicit form of the optimal control for linear quadratic stochastic optimal control problem and the open-loop Nash equilibrium point for nonzero sum differential games problem. We also discuss the solvability of the generalized Riccati equation system and give the linear feedback regulator for the optimal control problem using the solution of this kind of Riccati equation system. 展开更多
关键词 stochastic differential equations stochastic optimal control riccatiequation nonzero sum stochastic differential game
原文传递
Differentiability of stochastic differential equations driven by the G-Brownian motion 被引量:3
10
作者 LIN Qian 《Science China Mathematics》 SCIE 2013年第5期1087-1107,共21页
In this paper,we study the differentiability of the solutions of stochastic differential equations driven by the G-Brownian motion with respect to the initial data and the parameter.
关键词 G-EXPECTATION G-Brownian motion DIFFERENTIABILITY stochastic differential equations
原文传递
The Cocycle Property of Stochastic Differential Equations Driven by G-Brownian Motion 被引量:1
11
作者 Huijie QIAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第1期147-160,共14页
In this paper,solutions of the following non-Lipschitz stochastic differential equations driven by G-Brownian motion:Xt=x+∫^t0b(s,w,Xs)ds+∫^t0h(s,ω,Xs)ds+∫^t0σ(s,ω,Xs)dBs are constructed.It is shown th... In this paper,solutions of the following non-Lipschitz stochastic differential equations driven by G-Brownian motion:Xt=x+∫^t0b(s,w,Xs)ds+∫^t0h(s,ω,Xs)ds+∫^t0σ(s,ω,Xs)dBs are constructed.It is shown that they have the cocycle property.Moreover,under some special non-Lipschitz conditions,they are bi-continuous with respect to t,x. 展开更多
关键词 Cocycle property Non-Lipschitz condition SDEs driven by G-Brownian motion
原文传递
A large deviation for occupation time of critical branching α-stable process
12
作者 LI QiuYue REN YanXia 《Science China Mathematics》 SCIE 2011年第7期1445-1456,共12页
In this paper we establish a large deviation principle for the occupation times of critical branching α-stable processes for large dimensions d > 2α, by investigating two related nonlinear differential equations.... In this paper we establish a large deviation principle for the occupation times of critical branching α-stable processes for large dimensions d > 2α, by investigating two related nonlinear differential equations. Our result is an extension of Cox and Griffeath’s (in 1985) for branching Brownian motion for d > 4. 展开更多
关键词 large deviation critical branching α-stable process occupation time
原文传递
Analytical Solutions of a Model for Brownian Motion in the Double Well Potential
13
作者 刘爱洁 郑连存 +1 位作者 马连喜 张欣欣 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第1期51-56,共6页
In this paper, the analytical solutions of Schrodinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential f... In this paper, the analytical solutions of Schrodinger equation for Brownian motion in a double well potential are acquired by the homotopy analysis method and the Adomian decomposition method. Double well potential for Brownian motion is always used to obtain the solutions of Fokker-P1anck equation known as the Klein-Kramers equation, which is suitable for separation and additive Hamiltonians. In essence, we could study the random motion of Brownian particles by solving Schr6dinger equation. The anaiytical results obtained from the two different methods agree with each other well The double well potentiai is affected by two parameters, which are analyzed and discussed in details with the aid of graphical illustrations. According to the final results, the shapes of the double well potential have significant influence on the probability density function. 展开更多
关键词 Brown motion homotopy analysis method Schrodinger equation double well potential
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部