期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
空气监测站布点准则的研究 被引量:1
1
作者 刘恩栋 罗春 《武汉交通科技大学学报》 EI 1998年第4期400-402,共3页
针对目前空气监测布点存在的问题,对布点准则进行了一些实验性的调查研究.提出配对监测法及监测布点的类型和准则,为空气质量的评比提供参考标准.
关键词 空气监测 布点准则 水平位置 垂直位置 暴露浓度
下载PDF
结构模态测试中传感器布点优化方法比较 被引量:1
2
作者 彭细荣 路新瀛 《工业建筑》 CSCD 北大核心 2007年第z1期1008-1012,共5页
分别从布点准则及优化算法的角度对传感器布点优化(OSP)方法进行比较,并提出了分步传感器布点优化方法,可在布点优化中考虑多种准则,同时有效降低组合优化的规模,以某拱桥模态测试的传感器布点优化为例,验证了此方法适用于大规模结构的... 分别从布点准则及优化算法的角度对传感器布点优化(OSP)方法进行比较,并提出了分步传感器布点优化方法,可在布点优化中考虑多种准则,同时有效降低组合优化的规模,以某拱桥模态测试的传感器布点优化为例,验证了此方法适用于大规模结构的可行性。 展开更多
关键词 传感器布点准则 优化算法 比较研究
下载PDF
Fast uniform content-based satellite image registration using the scale-invariant feature transform descriptor 被引量:3
3
作者 Hamed BOZORGI Ali JAFARI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第8期1108-1116,共9页
Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which ... Content-based satellite image registration is a difficult issue in the fields of remote sensing and image processing. The difficulty is more significant in the case of matching multisource remote sensing images which suffer from illumination, rotation, and source differences. The scale-invariant feature transform (SIFT) algorithm has been used successfully in satellite image registration problems. Also, many researchers have applied a local SIFT descriptor to improve the image retrieval process. Despite its robustness, this algorithm has some difficulties with the quality and quantity of the extracted local feature points in multisource remote sensing. Furthermore, high dimensionality of the local features extracted by SIFT results in time-consuming computational processes alongside high storage requirements for saving the relevant information, which are important factors in content-based image retrieval (CBIR) applications. In this paper, a novel method is introduced to transform the local SIFT features to global features for multisource remote sensing. The quality and quantity of SIFT local features have been enhanced by applying contrast equalization on images in a pre-processing stage. Considering the local features of each image in the reference database as a separate class, linear discriminant analysis (LDA) is used to transform the local features to global features while reducing di- mensionality of the feature space. This will also significantly reduce the computational time and storage required. Applying the trained kernel on verification data and mapping them showed a successful retrieval rate of 91.67% for test feature points. 展开更多
关键词 Content-based image retrieval Feature point distribution Image registration Linear discriminant analysis REMOTESENSING Scale-invariant feature transform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部