vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetatio...vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.展开更多
Price volatility in stock market brings potential profile positions to the traders. How to predict the direction of the stock market or stock price becomes the primary job for traders' trading model. We are looking f...Price volatility in stock market brings potential profile positions to the traders. How to predict the direction of the stock market or stock price becomes the primary job for traders' trading model. We are looking for the direction of the market in a given timeframe. High-frequency traders will consider the potential profile-out position in millisecond level. Long-term holder will look into month time scale. For most of average traders, the ideal timeframe will be on daily base. In this paper, for a non-news trading day, the author will introduce statistics method to predict the stock prices and bid-ask spread for day trading.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.41071267)Scientific Research Foundation for Returned Scholars,Ministry of Education of China(Grant No.[2012]940)the Science & Technology Department of Fujian Province,China(Grant Nos.2012I0005,2012J01167)
文摘vegetation continuous The scale-location specific control on distribution was investigated through wavelet transforms approaches in subtropical mountain-hill region, Fujian, China. The Normalized Difference Vegetation Index (NDVI) was calculated as an indicator of vegetation greenness using Chinese Environmental Disaster Reduction Satellite images along latitudinal and longitudinal transects. Four scales of variations were identified from the local wavelet spectrum of NDVI, with much stronger wavelet variances observed at larger scales. The characteristic scale of vegetation distribution within mountainous and hilly regions in Southeast China was around 20 km. Significantly strong wavelet coherency was generally examined in regions with very diverse topography, typically characterized as small mountains and hills fractured by rivers and residents. The continuous wavelet based approaches provided valuable insight on the hierarchical structure and its corresponding characteristic scales of ecosystems, which might be applied in defining proper levels in multilevel models and optimal bandwidths in Geographically Weighted Regression.
文摘Price volatility in stock market brings potential profile positions to the traders. How to predict the direction of the stock market or stock price becomes the primary job for traders' trading model. We are looking for the direction of the market in a given timeframe. High-frequency traders will consider the potential profile-out position in millisecond level. Long-term holder will look into month time scale. For most of average traders, the ideal timeframe will be on daily base. In this paper, for a non-news trading day, the author will introduce statistics method to predict the stock prices and bid-ask spread for day trading.