期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于动态自适应布谷鸟搜索算法的多目标闭环供应链网络优化 被引量:11
1
作者 董海 高秀秀 魏铭琦 《系统工程》 CSSCI 北大核心 2020年第4期46-58,共13页
针对不确定环境下的闭环供应链网络设计问题,构建以最小网络成本、碳排放量和顾客满意度损失为目标的闭环供应链网络规划模型。采用多面体不确定集描述不确定参数,建立基于多面体不确定集的多目标鲁棒优化模型,同时提出一种基于动态步... 针对不确定环境下的闭环供应链网络设计问题,构建以最小网络成本、碳排放量和顾客满意度损失为目标的闭环供应链网络规划模型。采用多面体不确定集描述不确定参数,建立基于多面体不确定集的多目标鲁棒优化模型,同时提出一种基于动态步长和动态发现概率的自适应布谷鸟搜索算法,并引入群搜索策略以增加种群的进化效率,结合案例企业的运营数据,分别采用动态自适应布谷鸟搜索算法和非支配排序遗传算法求解模型,验证改进型布谷鸟搜索算法的优越性。最后为验证模型的鲁棒性,将多面体鲁棒优化模型与确定模型、盒式鲁棒优化模型以及区间多面体鲁棒优化模型进行对比,验证所提模型对不确定扰动的有效抑制作用。 展开更多
关键词 闭环供应链网络 多面体不确定集 鲁棒优化 动态自适应 布谷鸟算搜索算法
原文传递
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:7
2
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部