期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
对称双层铁磁膜中的界面自旋波 被引量:1
1
作者 周文平 云国宏 梁希侠 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期149-153,共5页
运用改进的界面重参数方法,讨论了周期边界条件下对称双层铁磁膜中自旋波本征激发问题,系统中可以存在两种本征模体模和界面模,并给出系统的色散关系和布里渊能带的精细结构.在此基础上重点分析了界面模的存在条件,并发现界面模的存在... 运用改进的界面重参数方法,讨论了周期边界条件下对称双层铁磁膜中自旋波本征激发问题,系统中可以存在两种本征模体模和界面模,并给出系统的色散关系和布里渊能带的精细结构.在此基础上重点分析了界面模的存在条件,并发现界面模的存在仅取决于界面耦合作用,与横向自旋波无关. 展开更多
关键词 磁性多层膜 自旋波 改进的界面重参数方法 布里渊区能带
下载PDF
The Brillouin zones and band gaps of a two-dimensional phononic crystal with parallelogram lattice structure
2
作者 HU JiaGuang XU Wen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第6期1013-1019,共7页
We present a detailed theoretical study on the acoustic band structure of two-dimensional (2D) phononic crystal. The 2D pho- nonic crystal with parallelogram lattice structure is considered to be formed by rigid sol... We present a detailed theoretical study on the acoustic band structure of two-dimensional (2D) phononic crystal. The 2D pho- nonic crystal with parallelogram lattice structure is considered to be formed by rigid solid rods embedded in air. For the circu- lar rods, some of the extrema of the acoustic bands appear in the usual high-symmetry points and, in contrast, we find that some of them are located in other specific lines. For the case of elliptic rods, our results indicate that it is necessary to study the whole first Brillouin zone to obtain rightly the band structure and corresponding band gaps. Furthermore, we evaluate the first and second band gaps using the plane wave expansion method and find that these gaps can be tuned by adjusting the side lengths ratio R, inclined angle 0 and filling fraction F of the parallelogram lattice with circular rods. The results show that the largest value of the first band gap appears at θ=90° and F--0.7854. In contrast, the largest value of the second band gap is at θ=60° and F=0.9068. Our results indicate that the improvement of matching degree between scatterers and lattice pattern, ra- ther than the reduction of structural symmetry, is mainly responsible for the enhancement of the band gaps in the 2D phononic crystal. 展开更多
关键词 phononic crystal band gap lattice basis vectors plane wave expansion method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部