针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。I...针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。展开更多
针对神经网络训练时容易陷入局部最优的问题,提出一种基于工业入侵检测模型的帝王蝶优化算法。利用帝王蝶算法(monarch butterfl y optimization,MBO)和狮群进化算法(lion pride optimization,LPO)的全局寻优和局部寻优提高网络参数的...针对神经网络训练时容易陷入局部最优的问题,提出一种基于工业入侵检测模型的帝王蝶优化算法。利用帝王蝶算法(monarch butterfl y optimization,MBO)和狮群进化算法(lion pride optimization,LPO)的全局寻优和局部寻优提高网络参数的求解质量,从而提高入侵检测结果的准确率。实验在工业控制系统标准数据集进行评估,结果表明模型符合工业入侵检测标准,与其它流行算法相比较,优化后的工业入侵检测技术具有较高的检测精度和较快的收敛速度。展开更多
文摘针对传统最大似然波达方向(maximum likelihood direction of arrival,ML-DOA)估计存在计算量大、估计精度差等问题,本文提出一种采用改进帝王蝶优化算法(improved monarch butterfly optimization algorithm,IMBO)的ML-DOA估计方法。IMBO算法通过精英反向学习策略对初始帝王蝶种群进行优化,得到适应度值较优的初始帝王蝶个体,进而能够改善帝王蝶种群的多样性;引入差分进化算法启发的变异操作以及自适应策略对帝王蝶个体的寻优方式进行改进,扩大了算法的搜索空间;引入了高斯-柯西变异算子,自适应调整变异步长,避免算法陷入局部最优。将IMBO应用于ML-DOA,实验表明,与传统的DOA估计算法相比,在不同信源数目、信噪比以及种群数量下,本文提出的算法收敛性能更好,均方根误差更低,运算量更小。
文摘针对神经网络训练时容易陷入局部最优的问题,提出一种基于工业入侵检测模型的帝王蝶优化算法。利用帝王蝶算法(monarch butterfl y optimization,MBO)和狮群进化算法(lion pride optimization,LPO)的全局寻优和局部寻优提高网络参数的求解质量,从而提高入侵检测结果的准确率。实验在工业控制系统标准数据集进行评估,结果表明模型符合工业入侵检测标准,与其它流行算法相比较,优化后的工业入侵检测技术具有较高的检测精度和较快的收敛速度。