The environmental potential of perforated surfaces in the tropics is noticeable. They allow obtaining higher attenuation and spatial dispersion of both direct and diffuse lighting in indoor spaces, whereas in outdoor ...The environmental potential of perforated surfaces in the tropics is noticeable. They allow obtaining higher attenuation and spatial dispersion of both direct and diffuse lighting in indoor spaces, whereas in outdoor areas, the openwork elements reduce surfaces temperature and mitigate the characteristic glare of smooth surfaces when exposed to sunlight. Openwork walls have an immense sustainability potential in modern tropical buildings: they limit the solar rays' admission, as well as provide an advantageous use of natural light and cross ventilation, but the research on their solar behavior is scarce. In order to obtain suitable levels of solar gain, relationships among shape, proportion, thickness and partitions composing openwork elements must be studied. This research evaluates solar gain in perforated surfaces by defining the "solar applicability range", a property useful to identify intervals of guidance where a perforated pattern shape will present a definite solar gain, giving valuable input in the geometric design of openwork elements and introducing shade performance in the design of openwork walls. Results give geometric guidelines that allow to widen the solar applicability range of a perforation pattern and to define two perforation features that have impact on the solar performance of perforated surfaces: focalization and solar performance shift.展开更多
Porous niobium oxide nanowires synthesized via a solvothermal method exhibited decreased bandgap,en- hanced light absorption and reduced charge-recombination rate.The porous Nb2O5 nanowires showed increased performanc...Porous niobium oxide nanowires synthesized via a solvothermal method exhibited decreased bandgap,en- hanced light absorption and reduced charge-recombination rate.The porous Nb2O5 nanowires showed increased performance for the photocatalytic H2 evolution and photo- degradation of rhodamine B,as compared to their solid counterparts,which could be ascribed to the peculiar porous nanostructure.展开更多
文摘The environmental potential of perforated surfaces in the tropics is noticeable. They allow obtaining higher attenuation and spatial dispersion of both direct and diffuse lighting in indoor spaces, whereas in outdoor areas, the openwork elements reduce surfaces temperature and mitigate the characteristic glare of smooth surfaces when exposed to sunlight. Openwork walls have an immense sustainability potential in modern tropical buildings: they limit the solar rays' admission, as well as provide an advantageous use of natural light and cross ventilation, but the research on their solar behavior is scarce. In order to obtain suitable levels of solar gain, relationships among shape, proportion, thickness and partitions composing openwork elements must be studied. This research evaluates solar gain in perforated surfaces by defining the "solar applicability range", a property useful to identify intervals of guidance where a perforated pattern shape will present a definite solar gain, giving valuable input in the geometric design of openwork elements and introducing shade performance in the design of openwork walls. Results give geometric guidelines that allow to widen the solar applicability range of a perforation pattern and to define two perforation features that have impact on the solar performance of perforated surfaces: focalization and solar performance shift.
基金financially supported by the National Natural Science Foundation of China (51271215 and 21601133)Sinopec Innovation Scheme (A-381)
文摘Porous niobium oxide nanowires synthesized via a solvothermal method exhibited decreased bandgap,en- hanced light absorption and reduced charge-recombination rate.The porous Nb2O5 nanowires showed increased performance for the photocatalytic H2 evolution and photo- degradation of rhodamine B,as compared to their solid counterparts,which could be ascribed to the peculiar porous nanostructure.