期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hewett-Packard公司的PA-RISC结构的发展
1
作者 杨英 《管理观察》 1996年第6期42-42,共1页
关键词 RISC结构 超标量处理机 工作站 带处理机 缓冲存储器 指令元件 最佳化 标准方案 运行频率 效力
下载PDF
A Low Power Non-Volatile LR-WPAN Baseband Processor with Wake-Up Identification Receiver
2
作者 YU Shuangming FENG Peng WU Nanjian 《China Communications》 SCIE CSCD 2016年第1期33-46,共14页
The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power... The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power management module.The main receiver adopts a unified simplified synchronization method and channel codec with proactive Reed-Solomon Bypass technique,which increases the robustness and energy efficiency of receiver.The WUI receiver specifies the communication node and wakes up the transceiver to reduce average power consumption of the transceiver.The embedded NVM can backup/restore the states information of processor that avoids the loss of the state information caused by power failure and reduces the unnecessary power of repetitive computation when the processor is waked up from power down mode.The baseband processor is designed and verified on a FPGA board.The simulated power consumption of processor is 5.1uW for transmitting and 28.2μW for receiving.The WUI receiver technique reduces the average power consumption of transceiver remarkably.If the transceiver operates 30 seconds in every 15 minutes,the average power consumption of the transceiver can be reduced by two orders of magnitude.The NVM avoids the loss of the state information caused by power failure and energy waste caused by repetitive computation. 展开更多
关键词 LR-WPAN wake-up identification receiver synchronization non-volatile memory baseband processor digital integrated circuit low power chip design
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部