期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
热电偶动态响应的带外部输入自回归模型 被引量:6
1
作者 金敏俊 李文军 +1 位作者 郑永军 曾九孙 《传感技术学报》 CAS CSCD 北大核心 2019年第6期844-851,共8页
热电偶测量动态温度受到热电偶自身动态特性的制约和影响。为了评价热电偶的动态特性,建立了一种双气流环境下的热电偶动态响应实验系统,测量热电偶在两种不同温度气流交替激励下的响应。由于激励温度本身也存在测量误差,当用回归方法... 热电偶测量动态温度受到热电偶自身动态特性的制约和影响。为了评价热电偶的动态特性,建立了一种双气流环境下的热电偶动态响应实验系统,测量热电偶在两种不同温度气流交替激励下的响应。由于激励温度本身也存在测量误差,当用回归方法分析热电偶响应过程时,响应过程构成了一种变量带误差问题。为了获得热电偶动态响应的无偏估计,建立了热电偶动态响应的状态空间方程,用随机扰动与确定性模型结合的方式描述热电偶动态响应过程,采用一种带外部输入自回归模型对响应过程进行辨识。以一种工业中常用的露端式镍铬镍硅热电偶为对象,给出了一个算例。实验和计算结果表明,带外部输入自回归模型适用于双气流环境下热电偶动态响应能力的评价。 展开更多
关键词 热电偶 动态响应 变量误差 外部输入自回归模型
下载PDF
含外部输入的非线性自回归模型及其在实时混合模拟中的应用 被引量:2
2
作者 陈梦晖 徐伟杰 +2 位作者 高小殊 郭彤 陈城 《工程力学》 EI CSCD 北大核心 2022年第9期40-47,71,共9页
传统实时混合模拟对数值子结构多采用有限元计算,对于较复杂或自由度较多的结构,容易导致计算机在指定积分步长内无法完成结构下一步响应的计算。为了提高计算效率,该文提出一种基于代理模型的实时混合模拟方法,采用含外部输入的非线性... 传统实时混合模拟对数值子结构多采用有限元计算,对于较复杂或自由度较多的结构,容易导致计算机在指定积分步长内无法完成结构下一步响应的计算。为了提高计算效率,该文提出一种基于代理模型的实时混合模拟方法,采用含外部输入的非线性自回归模型代替有限元计算。以非线性数值子结构和自复位阻尼器试验子结构组成的单自由度体系为对象,使用数值模拟的数据来训练代理模型,并对该模型进行实时混合模拟试验验证。试验结果表明,基于代理模型的实时混合模拟与传统实时混合模拟结果十分接近,具有替代后者的潜力。 展开更多
关键词 实时混合模拟 外部输入的非线性自回归模型 非线性 算法 代理模型
下载PDF
基于二维区间自回归模型的烧结终点预测 被引量:5
3
作者 丁园 王斌 +1 位作者 鄢进冲 潘昪 《烧结球团》 北大核心 2017年第3期1-6,15,共7页
炼铁烧结生产过程中,烧结终点位置难以确定,建立二维区间自回归模型对烧结终点进行预测。在阐述模型原理的基础上,设计基于运动模式的二维区间自回归预测建模流程,包括构建自回归预测模型得到计算空间的模式类别变量,利用K近邻算法分类... 炼铁烧结生产过程中,烧结终点位置难以确定,建立二维区间自回归模型对烧结终点进行预测。在阐述模型原理的基础上,设计基于运动模式的二维区间自回归预测建模流程,包括构建自回归预测模型得到计算空间的模式类别变量,利用K近邻算法分类得到模式运动空间中的模式类别变量。采用实际烧结终点废气温度数据验证模型,包括采用主成分分析法对多个废气温度时间序列得到进行降维并形成二维数据空间;利用四叉树粒子群优化算法划分废气温度时间序列二维模式运动空间;引入二维区间数来度量模式类别变量;建立二维带输入的区间自回归模型(IARX)实现炼铁烧结终点预测。结果表明,与传统的一维区间自回归模型相比,所建模型预测准确度更高。 展开更多
关键词 烧结终点预测 二维输入的区间自回归模型 运动模式 建模
下载PDF
压气机叶栅非定常线性自回归气动降阶模型研究 被引量:1
4
作者 刘汉儒 胡佳伟 +2 位作者 王掩刚 马岩 赵星宇 《推进技术》 EI CAS CSCD 北大核心 2022年第5期79-86,共8页
为满足叶轮机械领域高效非定常气动计算的迫切需求,采用线性带外输入的自回归(ARX)理论建立了高亚声速压气机叶栅非定常气动性能降阶模型。该降阶模型构造简单,建立较为容易。通过逐渐增加输入/输出延迟阶数,可以获得较高精度的模型超... 为满足叶轮机械领域高效非定常气动计算的迫切需求,采用线性带外输入的自回归(ARX)理论建立了高亚声速压气机叶栅非定常气动性能降阶模型。该降阶模型构造简单,建立较为容易。通过逐渐增加输入/输出延迟阶数,可以获得较高精度的模型超参数。研究结果表明:降阶模型对线性非定常系统的气动参数响应具有较好的预测精度,但在部分无量纲总压一阶幅值比以及无量纲静压一阶相位角存在一定预测误差。非定常系统线性工况下,同一折合频率的气动参数的一阶幅值比和相位角基本不随攻角幅值的增加而变化。通过与具有泛化能力的非线性降阶模型比较,基于线性假设发展的ARX模型能获得更高精度的气动参数响应。 展开更多
关键词 压气机叶栅 降阶模型 非定常流动 输入自回归模型 动态气动边界
下载PDF
基于Nonnegative Garrote的ARX和ARMA模型定阶方法 被引量:1
5
作者 谭力宁 韩海涛 马红光 《科学技术与工程》 北大核心 2013年第9期2509-2512,共4页
针对传统ARX和ARMA模型定阶方法计算量大和稳定性不强的缺点,提出采用非负绞杀法对ARX和ARMA模型进行定阶。通过分析ARX和ARMA模型的特点,对常规非负绞杀方法进行了改进,使其更适用于动态系统辨识问题,进而给出了相应的求解算法。仿真... 针对传统ARX和ARMA模型定阶方法计算量大和稳定性不强的缺点,提出采用非负绞杀法对ARX和ARMA模型进行定阶。通过分析ARX和ARMA模型的特点,对常规非负绞杀方法进行了改进,使其更适用于动态系统辨识问题,进而给出了相应的求解算法。仿真实验的结果表明了该方法的有效性,且在稳定性上优于传统的信息量准则法。 展开更多
关键词 带外部输入的自回归模型 自回归滑动平均模型 非负绞杀 定阶
下载PDF
人工胰脏中数据驱动个体血糖代谢模型的辨识 被引量:2
6
作者 李鹏 祝楠楠 +1 位作者 郁磊 王弼陡 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第3期714-720,共7页
数据驱动时间序列模型是人工胰脏系统中最常用的一类血糖预测模型,但其血糖预测精度受到进食不确定性和胰岛素敏感性波动等实际因素的影响。本文从真实血糖测量数据入手,提出基于卡尔曼滤波参数估计的带输入误差滑动平均模型的辨识方法... 数据驱动时间序列模型是人工胰脏系统中最常用的一类血糖预测模型,但其血糖预测精度受到进食不确定性和胰岛素敏感性波动等实际因素的影响。本文从真实血糖测量数据入手,提出基于卡尔曼滤波参数估计的带输入误差滑动平均模型的辨识方法,将辨识结果与最小二乘法辨识结果进行对比。结果表明,本文提出的辨识方法具有辨识精度高(FIT:90.05±3.12%v.s.54.41±9.56%)、能有效抵消实际因素的影响、对不同特征的个体能获得稳定的辨识结果等优势。 展开更多
关键词 卡尔曼滤波参数估计 输入误差自回归滑动平均模型 数据驱动模型 个体化血糖代谢模型 人工胰脏
下载PDF
一种变步长CMAC的沉降NARMAX模型
7
作者 王华秋 《计算机应用研究》 CSCD 北大核心 2011年第4期1368-1371,1377,共5页
为了提高氧化铝生产质量和降低能耗,分析了氧化铝沉降工艺中影响沉降过程的各种因素,采用小脑模型神经网络(CMAC)系统辨识的方法建立沉降系统的带外部输入的自回归滑移模型(ARMAX)。针对CMAC收敛性存在的问题,提出了基于变步长小脑模型... 为了提高氧化铝生产质量和降低能耗,分析了氧化铝沉降工艺中影响沉降过程的各种因素,采用小脑模型神经网络(CMAC)系统辨识的方法建立沉降系统的带外部输入的自回归滑移模型(ARMAX)。针对CMAC收敛性存在的问题,提出了基于变步长小脑模型神经网络(CMAC)算法,通过双曲正割函数优化学习步长,提高了小脑模型神经网络算法的收敛速度和计算精度,进而优化了沉降槽密度ARMAX模型。仿真实验表明,该算法的ARMAX模型可以对沉降过程中的槽内密度进行准确识别,指导氧化铝的沉降生产操作。 展开更多
关键词 沉降 外部输入的自回归滑移 变步长小脑模型神经网络 系统辨识
下载PDF
一种混合粒子群优化的沉降ARMAX模型
8
作者 王华秋 《化工自动化及仪表》 CAS 北大核心 2011年第1期18-22,共5页
为了提高氧化铝生产质量和降低能耗,分析了氧化铝沉降工艺中影响沉降过程的各种因素,采用系统辨识的方法建立沉降系统的带外部输入的自回归滑移ARMAX模型。为此提出了基于二阶混沌的混合粒子群算法,解决了粒子群算法容易早熟以及全局寻... 为了提高氧化铝生产质量和降低能耗,分析了氧化铝沉降工艺中影响沉降过程的各种因素,采用系统辨识的方法建立沉降系统的带外部输入的自回归滑移ARMAX模型。为此提出了基于二阶混沌的混合粒子群算法,解决了粒子群算法容易早熟以及全局寻优效率偏低等问题,进而建立了基于二阶混沌的混合粒子群优化算法的沉降槽密度ARMAX模型。仿真实验表明,该混合粒子群算法的ARMAX模型可以对沉降过程中的槽内密度进行准确识别,指导氧化铝的沉降生产操作。 展开更多
关键词 沉降 外部输入的自回归滑移 混合粒子群 系统辨识
下载PDF
基于区间数度量的运动模式建模与控制 被引量:5
9
作者 徐正光 孙昌平 吴金霞 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第9期1115-1124,共10页
针对一类复杂的生产过程,本文作者在前期研究成果中,提出了基于运动模式的建模方法与控制方法的思想.针对该方法中模式类别变量的度量问题,本文提出采用区间数来度量模式类别变量,进而提出了一种基于区间数度量的运动模式建模与控制方法... 针对一类复杂的生产过程,本文作者在前期研究成果中,提出了基于运动模式的建模方法与控制方法的思想.针对该方法中模式类别变量的度量问题,本文提出采用区间数来度量模式类别变量,进而提出了一种基于区间数度量的运动模式建模与控制方法.首先,采用K均值聚类算法对收集的足够长时间内的工况数据进行聚类,得到C个模式类别,进而构成模式刻度"空间".为了描述模式的运动,本文提出了带输入的区间自回归模型(IARX).在此基础上,采用IARX模型建立模式类别变量的控制模型并给出了相应的控制算法.最后,以烧结生产过程为例验证了本文所提建模与控制方法的有效性. 展开更多
关键词 运动模式 模式运动“空间” 模式类别变量 输入的区间自回归模型 区间时间序列 模式识别 建模与控制
下载PDF
EMD与NARX神经网络的风电场总功率组合预测 被引量:6
10
作者 张振华 马超 +1 位作者 徐瑾辉 欧阳泽拯 《计算机工程与应用》 CSCD 北大核心 2016年第12期265-270,共6页
探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平... 探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平稳时间序列进行经验模态分解,得到不同频带本征模式分量的平稳序列。对不同频带的平稳分量建立相应的NARX神经网络预测模型,并将各分量模型的预测值进行等权求和得到最终预测值。此外,为研究不同时间间隔对预测结果的影响,采用某大型风电场时间间隔为5 min与15 min的数据进行实验。预测结果表明,提出的组合预测模型适合于总功率预测,其预测效果比传统模型的效果更佳,且时间间隔为5 min的数据比时间间隔为15 min的数据预测精度更高。 展开更多
关键词 经验模态分解 非线性自回归神经网络(外部输入的)(NARX) 非平稳时间序列 风电场 总功率
下载PDF
可重构功放的新颖NARX神经网络逆向建模研究
11
作者 南敬昌 臧净 +1 位作者 高明明 胡婷婷 《微波学报》 CSCD 北大核心 2019年第5期51-56,共6页
针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的... 针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的前馈部分完成数据分类,解决设计中的多解问题。然后应用于可以覆盖多个频段的可重构功率放大器中,实验表明,该方法在精度方面分别优于直接逆向建模方法和自适应η逆向建模方法99.86%和81.32%,计算速度方面优于直接逆向建模方法31.72%,可以降低射频微波可重构功率放大器的设计复杂度、缩短其设计时间。 展开更多
关键词 外部输入的非线性自回归(NARX)神经网络 逆向建模 DAFNN神经元模型 支持向量机 可重构功率放大器
下载PDF
基于GFRFs的非线性系统结构故障检测方法
12
作者 史洪岩 杨文奎 潘多涛 《大连工业大学学报》 CAS 北大核心 2023年第5期385-390,共6页
为了能够更加准确高效地检测非线性系统的结构是否发生故障,提出了基于系统带外部输入的非线性自回归(NARX)模型的广义频率响应函数(GFRFs)故障检测方法。根据受检系统的NARX模型参数和一阶GFRF估算出系统的高阶GFRFs,通过比较受检系统... 为了能够更加准确高效地检测非线性系统的结构是否发生故障,提出了基于系统带外部输入的非线性自回归(NARX)模型的广义频率响应函数(GFRFs)故障检测方法。根据受检系统的NARX模型参数和一阶GFRF估算出系统的高阶GFRFs,通过比较受检系统与无故障系统结构的广义频率响应函数值,实现系统结构的故障检测。根据受检系统和无故障系统的GFRFs确定系统故障损害程度指数,进一步对故障程度进行评估。通过实验与其他检测方法进行对比,验证了所提检测方法的优越性。 展开更多
关键词 故障检测 外部输入的非线性自回归模型 广义频率响应函数 频域分析 非线性系统
下载PDF
地铁车站施工过程中地表沉降的NARXNN时间序列预测模型 被引量:14
13
作者 文明 张顶立 +1 位作者 房倩 张良以 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2015年第S1期3306-3312,共7页
准确预测地铁车站开挖过程中的地表沉降已成为城市地下工程风险控制的重点和难点。针对传统时间序列预测模型预测时的单一线性和忽略施工因素影响的静态局限性,提出了带外部输入的非线性自回归神经网络(NARXNN)时间序列预测模型。该模... 准确预测地铁车站开挖过程中的地表沉降已成为城市地下工程风险控制的重点和难点。针对传统时间序列预测模型预测时的单一线性和忽略施工因素影响的静态局限性,提出了带外部输入的非线性自回归神经网络(NARXNN)时间序列预测模型。该模型本身具有延迟单元和反馈结构,且通过引入施工影响因子作为外部输入的一部分,可以非线性动态地考虑地铁车站施工过程。运用NARXNN时间序列预测模型对北京地铁六号线北海北站开挖过程的地表沉降进行预测,结果表明:(1)与传统的ARMA时间序列预测模型相比,NARXNN时间序列预测模型适应性更好、准确性更高;(2)通过引入施工影响因子,NARXNN时间序列预测模型能够准确预测沉降历时曲线突变点处的变化趋势;(3)可以通过引入多组施工影响因子或优化施工影响因子的取值方法来进一步提高NARXNN时间序列预测模型的预测精度。 展开更多
关键词 地下工程 外部输入的非线性自回归神经网络 施工影响因子 时间序列 地铁车站 地表沉降
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部