期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
未知杂波条件下样本集校正的势估计概率假设密度滤波算法 被引量:4
1
作者 杨丹 姬红兵 张永权 《电子与信息学报》 EI CSCD 北大核心 2018年第4期912-919,共8页
在贝叶斯框架下的多目标跟踪算法中,总是假设杂波的先验信息是已知的。然而,实际应用中,杂波分布一般是未知的,假设的杂波分布往往与实际情况匹配度差,难以保证滤波精度。针对该问题,该文研究了未知杂波势估计概率假设密度(CPHD)滤波算... 在贝叶斯框架下的多目标跟踪算法中,总是假设杂波的先验信息是已知的。然而,实际应用中,杂波分布一般是未知的,假设的杂波分布往往与实际情况匹配度差,难以保证滤波精度。针对该问题,该文研究了未知杂波势估计概率假设密度(CPHD)滤波算法。首先,提出一种基于狄利克雷过程混合模型(DPMM)类的未知杂波CPHD算法,该算法能够自动选取合适的类数对杂波进行描述,有效降低了杂波空间分布估计的误差。此外,提出样本集校正的思想,并将其引入所提算法,通过去除样本集中由真实目标产生的量测,较好地解决了杂波数过估和目标数低估的问题。与传统算法相比,所提算法的滤波精度更接近于杂波信息匹配情况下的性能,仿真结果验证了其优越性与鲁棒性。 展开更多
关键词 多目标跟踪 参数估计 未知杂波 狄利克雷过程混合模型 估计概率假设密度滤波
下载PDF
基于势概率假设密度滤波的检测前跟踪新算法 被引量:13
2
作者 林再平 周一宇 安玮 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第5期437-443,共7页
基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前... 基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前跟踪的实际,合理地推导出CPHD-TBD算法的粒子权重更新表达式;分析了CPHD滤波目标势分布的物理意义,实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合,提出了基于势概率假设密度滤波的检测前跟踪算法,并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比,能更详细地传递目标分布信息,从本质上改变了PHD-TBD对目标数估计的方式,能更准确稳定估计目标数,实现了对目标的发现和状态准确估计,性能明显更优. 展开更多
关键词 检测前跟踪 概率假设密度滤波 粒子更新 分布更新
下载PDF
基于高斯混合带势概率假设密度滤波器的未知杂波下多机动目标跟踪算法 被引量:8
3
作者 胡子军 张林让 +1 位作者 张鹏 王纯 《电子与信息学报》 EI CSCD 北大核心 2015年第1期116-122,共7页
多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该... 多模型的随机有限集(RFS)类方法是一类有效的多机动目标跟踪算法,但是现有算法都假定杂波统计特性先验已知,不适用于未知杂波背景。该文以高斯混合带势概率假设密度滤波器(GMCPHDF)为基础,提出一种未知杂波下的多机动目标跟踪算法。该算法对目标和杂波分别独立建模,通过最优高斯(BFG)估计方法对真实目标的强度函数进行预测,从而使多目标强度函数独立于机动目标的运动模型,实现各时刻真实目标的强度函数、杂波源期望个数以及真实目标和杂波源的混合势分布的迭代。仿真结果表明,该算法能够有效地联合估计多机动目标状态以及杂波期望个数。 展开更多
关键词 多机动目标跟踪 未知杂波 概率假设密度滤波 最优高斯估计
下载PDF
基于势概率假设密度滤波器的不可分辨目标跟踪算法 被引量:4
4
作者 连峰 元向辉 陈辉 《系统工程与电子技术》 EI CSCD 北大核心 2013年第12期2445-2451,共7页
根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的... 根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。 展开更多
关键词 不可分辨目标跟踪 概率假设密度滤波 随机有限集合 有限集合统计
下载PDF
基于星凸随机超曲面的扩展目标伽马高斯混合势概率假设密度滤波器 被引量:4
5
作者 李翠芸 王精毅 +1 位作者 姬红兵 刘远 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第5期825-830,共6页
针对杂波和检测不确定情况下扩展目标形状估计精度低的问题,提出了一种基于星凸随机超曲面模型(SRHM)的扩展目标伽马高斯混合势概率假设密度(CPHD)滤波器.该算法在高斯混合概率假设密度滤波的框架下,首先将目标形状建模为星凸随机超曲面... 针对杂波和检测不确定情况下扩展目标形状估计精度低的问题,提出了一种基于星凸随机超曲面模型(SRHM)的扩展目标伽马高斯混合势概率假设密度(CPHD)滤波器.该算法在高斯混合概率假设密度滤波的框架下,首先将目标形状建模为星凸随机超曲面,然后通过CPHD滤波估计出目标的质心位置和目标数目,最后通过将已估计的目标质心位置作为目标形状的中心点来结合量测对目标形状进行估计.其中,算法通过自适应估计尺度变换因子对形状边界进行约束优化,解决了星凸随机超曲面模型存在的边界形状不规则的问题.设计扩展目标个数未知以及含有杂波的实验场景,实验结果验证了该算法的有效性和可行性. 展开更多
关键词 星凸随机超曲面 概率假设密度滤波 形状估计 伽马函数 约束优化
下载PDF
基于噪声方差估计的高斯混合概率假设密度滤波算法 被引量:5
6
作者 梁荔 敬忠良 +1 位作者 董鹏 李旻哲 《上海交通大学学报》 EI CAS CSCD 北大核心 2016年第9期1355-1361,共7页
针对传统的高斯混合概率假设密度(GM-PHD)滤波器在噪声先验特性未知或不准确时跟踪性能会下降,提出了一种基于噪声方差估计的高斯混合概率假设密度(NCE-GM-PHD)滤波算法.该算法可以同时在线估计时变的目标个数、多目标状态以及噪声方差... 针对传统的高斯混合概率假设密度(GM-PHD)滤波器在噪声先验特性未知或不准确时跟踪性能会下降,提出了一种基于噪声方差估计的高斯混合概率假设密度(NCE-GM-PHD)滤波算法.该算法可以同时在线估计时变的目标个数、多目标状态以及噪声方差.首先,通过引入遗忘因子和采取有偏估计的方法改进了传统的Sage-Husa自适应滤波器.基于改进的自适应滤波器,推导了带噪声方差估计的GM-PHD滤波算法.仿真结果表明,在非时变或时变量测噪声方差未知的情况下,NCE-GM-PHD算法的跟踪性能优于传统的GM-PHD算法,对噪声变化的适应能力更强. 展开更多
关键词 高斯混合概率假设密度滤波 多目标跟踪 噪声方差估计 自适应滤波
下载PDF
基于高斯混合概率假设密度的运动参数估计组合平滑滤波算法 被引量:4
7
作者 黄庆东 李晓瑞 +1 位作者 曹艺苑 刘青 《电子与信息学报》 EI CSCD 北大核心 2022年第7期2488-2495,共8页
针对高斯混合概率假设密度(GM-PHD)滤波器在目标速度未知或不准确时,目标状态估计性能较差,该文提出一种基于GM-PHD的运动参数估计组合平滑滤波算法。该算法通过目标状态提取速度信息,经过中值平滑和线性平滑组合处理提升速度估计准确性... 针对高斯混合概率假设密度(GM-PHD)滤波器在目标速度未知或不准确时,目标状态估计性能较差,该文提出一种基于GM-PHD的运动参数估计组合平滑滤波算法。该算法通过目标状态提取速度信息,经过中值平滑和线性平滑组合处理提升速度估计准确性,然后将速度反馈给GM-PHD滤波器的状态转移方程,提高状态预测精度。仿真结果表明,目标速度未知或不准确时,所提算法能够明显改善GM-PHD滤波器状态估计性能。 展开更多
关键词 目标跟踪 高斯混合概率假设密度滤波 参数估计 组合平滑
下载PDF
一种粒子势概率假设密度滤波纯方位多目标跟踪算法 被引量:6
8
作者 张俊根 《控制理论与应用》 EI CAS CSCD 北大核心 2020年第6期1319-1325,共7页
针对基于势概率假设密度算法(CPHD)的纯方位多目标跟踪,提出一种新型的多传感器粒子CPHD滤波算法.该算法通过分析混合线性/非线性状态模型的结构信息,结合粒子滤波(PF)与卡尔曼滤波(KF)对各个目标的状态进行预测与估计,运用Mean-Shift... 针对基于势概率假设密度算法(CPHD)的纯方位多目标跟踪,提出一种新型的多传感器粒子CPHD滤波算法.该算法通过分析混合线性/非线性状态模型的结构信息,结合粒子滤波(PF)与卡尔曼滤波(KF)对各个目标的状态进行预测与估计,运用Mean-Shift方法提取概率假设密度的峰值作为目标状态估计值,并对算法复杂度进行了分析.仿真结果表明,算法可改善目标跟踪效果. 展开更多
关键词 纯方位多目标跟踪 概率假设密度 粒子滤波 多传感器 均值漂移
下载PDF
边缘化粒子概率假设密度滤波的多目标跟踪 被引量:1
9
作者 于洋 宋建辉 +1 位作者 刘砚菊 司冠楠 《火力与指挥控制》 CSCD 北大核心 2017年第5期14-18,22,共6页
针对复杂情况下的多目标跟踪问题,提出一种边缘化粒子概率假设密度滤波(MPF-PHD)方法。该方法首先将复杂情况下多个目标的状态向量分别提取出其中的非线性状态与线性状态。然后利用粒子概率假设密度滤波(PF-PHD)估计非线性状态,利用卡... 针对复杂情况下的多目标跟踪问题,提出一种边缘化粒子概率假设密度滤波(MPF-PHD)方法。该方法首先将复杂情况下多个目标的状态向量分别提取出其中的非线性状态与线性状态。然后利用粒子概率假设密度滤波(PF-PHD)估计非线性状态,利用卡尔曼滤波(KF)估计线性状态,并把其中与非线性状态相关的线性状态估计用来优化非线性状态估计。通过对MPF-PHD方法与传统的PF-PHD方法仿真对比,验证了MPF-PHD方法有效解决了复杂情况下多目标跟踪的漏检问题,提高了多目标状态估计精度。 展开更多
关键词 边缘化粒子概率假设密度滤波 多目标跟踪 非线性状态估计 卡尔曼滤波
下载PDF
parfor模式在粒子概率假设密度滤波中的应用 被引量:2
10
作者 陈金广 马全海 《四川兵工学报》 CAS 2015年第12期75-79,共5页
P-PHD(Particle-Probability Hypothesis Density)是概率假设密度(PHD,Probability Hypothesis Density)的一种粒子实现方式,它不受系统模型的限制,可以适用于线型或者非线性系统。但是随着粒子数的增加,该算法所需要的时间复杂度不断... P-PHD(Particle-Probability Hypothesis Density)是概率假设密度(PHD,Probability Hypothesis Density)的一种粒子实现方式,它不受系统模型的限制,可以适用于线型或者非线性系统。但是随着粒子数的增加,该算法所需要的时间复杂度不断增大。为了提高P-PHD的执行效率,分析了P-PHD的执行结构,确定了其中满足并行执行的部分。通过引入parfor对该部分实施并行计算,降低了算法的运行时间。其主要步骤是运用Matlab自带的并行计算工具箱中的parfor模式,并行更新每个粒子的权值。仿真实验表明,parfor模式可以较好地应用到该算法中,减少了更新步骤的运行时间,且能够满足算法的封闭性。 展开更多
关键词 目标跟踪 时间复杂度 并行计算 概率假设密度滤波 状态估计
下载PDF
基于椭圆随机超曲面模型CPHD滤波器的多扩展目标跟踪算法
11
作者 滕明 侯亚威 李伟杰 《现代雷达》 CSCD 北大核心 2024年第5期26-30,共5页
复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,... 复杂场景下多扩展目标跟踪在自动驾驶、目标识别等领域具有很高的应用价值。文中提出了一种基于椭圆随机超曲面模型(ERHM)的势概率假设密度(CPHD)滤波器。首先,基于有限集统计理论,利用CPHD滤波器建立多扩展目标的贝叶斯滤波框架;然后,采用ERHM描述扩展目标的量测源分布,并利用无迹变换嵌入CPHD滤波流程;最后,仿真实验结果表明,ERHM-CPHD滤波器对椭圆扩展目标的跟踪性能优于传统的伽马高斯逆威沙特CPHD滤波器,在杂波密度较高、目标新生的位置比较确定的场景或者扩展目标数目较多时,对扩展目标的参数估计更为准确。所提方法在高分辨率雷达多目标跟踪方面具备很好的运用前景。 展开更多
关键词 多扩展目标跟踪 椭圆随机超曲面 概率假设密度滤波 无迹变换
下载PDF
基于多帧状态估计机制的GM-PHD滤波器 被引量:2
12
作者 王丽娟 王登峰 张玉宏 《电光与控制》 北大核心 2018年第1期92-97,113,共7页
为处理低检测概率情况下目标漏检的情况,引入一种新的多帧状态估计机制,提出了一种基于多帧状态估计机制的高斯混合概率假设密度滤波器。该机制依据不同时间步骤的目标权值来构建每个目标的历史权值矩阵和状态提取标识符。在目标跟踪过... 为处理低检测概率情况下目标漏检的情况,引入一种新的多帧状态估计机制,提出了一种基于多帧状态估计机制的高斯混合概率假设密度滤波器。该机制依据不同时间步骤的目标权值来构建每个目标的历史权值矩阵和状态提取标识符。在目标跟踪过程中,当一些连续运动目标在某些时间步骤漏检时,通过多帧状态估计机制,充分依据关联目标的权值矩阵和状态提取标识符来对目标的当前状态进行估计。仿真实验表明,所提算法在保证跟踪有效性的同时,能够在低检测概率且杂波率相对较高的情况下显著提高目标的跟踪性能,具有较强的鲁棒性。 展开更多
关键词 多目标跟踪 数据关联 多帧估计机制 概率假设密度 高斯混合滤波 低检测概率
下载PDF
多目标跟踪的核粒子概率假设密度滤波算法 被引量:10
13
作者 庄泽森 张建秋 尹建君 《航空学报》 EI CAS CSCD 北大核心 2009年第7期1264-1270,共7页
提出一种新的多目标跟踪算法:核粒子概率假设密度滤波算法(KP-PHDF)。算法的创新点在概率假设密度滤波算法(PHDF)的目标状态提取步骤,以粒子概率假设密度滤波算法为框架,并运用结合了mean-shift算法的核密度估计(KDE)理论进行概率假设密... 提出一种新的多目标跟踪算法:核粒子概率假设密度滤波算法(KP-PHDF)。算法的创新点在概率假设密度滤波算法(PHDF)的目标状态提取步骤,以粒子概率假设密度滤波算法为框架,并运用结合了mean-shift算法的核密度估计(KDE)理论进行概率假设密度(PHD)分布的二次估计、提取PHD峰值位置作为目标状态估计值。分析与多目标跟踪(MTT)仿真的结果表明,与现有序列蒙特卡罗概率假设密度滤波算法(SMC-PHDF)相比,在相同仿真条件下新算法的估计精度提高30.5%。 展开更多
关键词 信号处理 粒子概率假设密度滤波算法 密度估计 仿真 多目标跟踪
原文传递
未知噪声统计下多模型概率假设密度粒子滤波算法 被引量:5
14
作者 吴鑫辉 黄高明 高俊 《控制与决策》 EI CSCD 北大核心 2014年第3期475-480,共6页
针对传统多目标概率假设密度滤波(PHD)器在噪声先验统计未知或不准确时滤波精度下降甚至丢失目标的问题,设计一种自适应多模型粒子PHD(MMPHD)滤波算法.该算法利用多模型近似思想,推导出一种多模型概率假设密度估计器,不仅能估计多目标状... 针对传统多目标概率假设密度滤波(PHD)器在噪声先验统计未知或不准确时滤波精度下降甚至丢失目标的问题,设计一种自适应多模型粒子PHD(MMPHD)滤波算法.该算法利用多模型近似思想,推导出一种多模型概率假设密度估计器,不仅能估计多目标状态,而且能实时估计未知且时变的噪声参数,并采用蒙特卡罗方法给出了MMPHD闭集解.仿真实例表明,所提出的算法具有应对噪声变化的自适应能力,可有效提高目标跟踪精度. 展开更多
关键词 多目标跟踪 概率假设密度滤波 多模型估计 蒙特卡罗方法
原文传递
基于航迹—估计关联的GM-CPHD后处理算法 被引量:4
15
作者 陈金广 孙瑞 马丽丽 《计算机工程与应用》 CSCD 北大核心 2015年第8期189-194,共6页
高斯势概率假设密度滤波算法在低检测率条件下目标数目估计会出现偏差。针对该问题,提出了一种基于航迹—估计关联的GM-CPHD后处理算法。计算航迹和估计之间的距离矩阵,利用匈牙利指派算法进行航迹—估计关联。通过设定航迹的连续性阈... 高斯势概率假设密度滤波算法在低检测率条件下目标数目估计会出现偏差。针对该问题,提出了一种基于航迹—估计关联的GM-CPHD后处理算法。计算航迹和估计之间的距离矩阵,利用匈牙利指派算法进行航迹—估计关联。通过设定航迹的连续性阈值对短航迹进行裁剪,并以此消除虚假目标估计。利用拉格朗日插值对各条不连续的航迹进行插值,以弥补由于低检测率而造成的遗漏估计。仿真实验结果表明,该处理算法能够有效地提高目标数目的估计精度。 展开更多
关键词 目标跟踪 高斯混合概率假设密度(GM-CPHD)滤波 航迹-估计关联 拉格朗日插值
下载PDF
基于概率假设密度滤波的多目标雷达空间误差配准算法 被引量:5
16
作者 章涛 李海 吴仁彪 《控制与决策》 EI CSCD 北大核心 2018年第8期1429-1435,共7页
针对数据关联关系不确定的多目标场景下的雷达空间误差配准问题,提出一种基于概率假设密度(PHD)滤波的雷达空间误差估计方法.该方法在地心地固(ECEF)坐标系下建立雷达空间误差及其观测的随机有限集合(RFS)描述形式,结合PHD滤波算法避免... 针对数据关联关系不确定的多目标场景下的雷达空间误差配准问题,提出一种基于概率假设密度(PHD)滤波的雷达空间误差估计方法.该方法在地心地固(ECEF)坐标系下建立雷达空间误差及其观测的随机有限集合(RFS)描述形式,结合PHD滤波算法避免多个雷达观测的数据关联问题,利用高斯混合概率假设密度(GM-PHD)滤波器实现多目标场景下的雷达系统误差递推融合估计.Monte Carlo仿真实验结果表明,所提出的基于PHD滤波的雷达空间误差配准算法能够有效地实现数据关联关系不确定情况下的多目标雷达空间误差融合估计,且估计精度及稳定性优于结合数据关联算法的空间误差配准方法. 展开更多
关键词 多雷达组网 雷达空间误差配准 系统误差估计 概率假设密度滤波 地心地固坐标系
原文传递
面向多目标视频跟踪的出生强度估计方法 被引量:3
17
作者 周小龙 沈恒华 何炳蔚 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第12期2223-2231,共9页
针对多目标视频跟踪中的新生目标出生强度估计问题,提出一种有效的基于熵分布和覆盖率的方法.该方法利用前一时刻所获目标状态及测量值对出生强度进行初始化,再利用当前时刻所获测量值对出生强度进行更新.在更新阶段,首先选取仅依赖于... 针对多目标视频跟踪中的新生目标出生强度估计问题,提出一种有效的基于熵分布和覆盖率的方法.该方法利用前一时刻所获目标状态及测量值对出生强度进行初始化,再利用当前时刻所获测量值对出生强度进行更新.在更新阶段,首先选取仅依赖于权值的负指数熵分布作为出生强度的先验分布,滤除出生强度中与当前时刻测量值无关的噪声分量;然后通过计算出生强度与相应测量值间的覆盖率对出生强度权值进行再次更新,进一步滤除权值小于给定阈值的噪声分量.实验结果表明,文中方法有效地降低了噪声分量的影响,提高了多目标视频跟踪的准确率. 展开更多
关键词 多目标视频跟踪 高斯混合概率假设密度滤波 出生强度估计 熵分布
下载PDF
基于增量式有限混合模型的多目标状态极大似然估计 被引量:1
18
作者 闫小喜 韩崇昭 《自动化学报》 EI CSCD 北大核心 2011年第5期577-584,共8页
提出了增量式有限混合模型来提取概率假设密度滤波器序贯蒙特卡罗实现方式中的多目标状态.该模型以增量方式构建,其混合分量采用逐个方式插入其中.采用极大似然准则来估计多目标状态.对于给定分量数目的混合模型,应用期望极大化算法来... 提出了增量式有限混合模型来提取概率假设密度滤波器序贯蒙特卡罗实现方式中的多目标状态.该模型以增量方式构建,其混合分量采用逐个方式插入其中.采用极大似然准则来估计多目标状态.对于给定分量数目的混合模型,应用期望极大化算法来获得参数的极大似然解.在新分量插入混合模型时,保持已有混合模型的参数不变,仍旧采用极大似然准则从候选新分量集合中选择新插入分量.新分量插入混合步和期望极大化算法拟合混合参数步交替应用直到混合分量数目达到概率假设密度滤波器的目标数目估计值.利用k-d树生成插入到混合模型的新分量候选集合.增量式有限混合模型统一了分量数目变化趋势和粒子集合似然函数的变化趋势,有助于一步一步地搜寻混合模型的极大似然解.仿真结果表明,基于增量式有限混合模型的概率假设密度滤波器状态提取算法在多目标跟踪的应用中优于已有的状态提取算法. 展开更多
关键词 多目标状态估计 增量式有限混合模型 概率假设密度滤波 极大似然 期望极大化
下载PDF
天基光学观测低轨多目标跟踪的多模型CPHD滤波方法 被引量:1
19
作者 李冬 玄志武 《计算机工程与科学》 CSCD 北大核心 2016年第4期833-838,共6页
低轨多目标跟踪是天基光学系统信息处理需要解决的重要问题之一。提出了一种基于多模型势概率假设密度(CPHD)滤波的跟踪方法,建立了描述低轨目标运动的常轴向力模型和二体力学模型,给出了天基测量模型,将低轨目标的运动模式和运动状态... 低轨多目标跟踪是天基光学系统信息处理需要解决的重要问题之一。提出了一种基于多模型势概率假设密度(CPHD)滤波的跟踪方法,建立了描述低轨目标运动的常轴向力模型和二体力学模型,给出了天基测量模型,将低轨目标的运动模式和运动状态组合成扩展状态,利用CPHD滤波递推扩展状态的验后概率假设密度(PHD)和目标数量的验后概率密度,能够同时得到目标状态和目标数量的估计。仿真结果表明,多模型CPHD滤波对目标数量和目标状态的估计精度相对多模型PHD滤波和单模型CPHD滤波有显著提高。 展开更多
关键词 天基光学观测 多模型 概率假设密度滤波 低轨 多目标跟踪
下载PDF
目标威胁估计与传感器管理联合方法
20
作者 岑明 孙敏 田甄 《系统仿真学报》 CAS CSCD 北大核心 2014年第12期3015-3020,共6页
在面向目标跟踪的传感器管理问题中,以信息增量作为优化指标的方法未考虑到不同类型目标的影响程度。实际应用中,不同威胁程度的目标应给予不同程度的关注,从而分配不同的传感器资源,因此提出一种目标威胁估计与传感器管理联合方法。利... 在面向目标跟踪的传感器管理问题中,以信息增量作为优化指标的方法未考虑到不同类型目标的影响程度。实际应用中,不同威胁程度的目标应给予不同程度的关注,从而分配不同的传感器资源,因此提出一种目标威胁估计与传感器管理联合方法。利用人工势场法计算各目标的威胁指数,根据目标的威胁指数及其信息增量来构造新的传感器管理目标函数,在概率假设密度滤波(PHDF)算法框架下,通过使得目标函数最大来实现传感器资源的优化分配。仿真结果表明,与仅考虑信息增量最大化的方法相比,该方法能更合理地分配传感器资源。 展开更多
关键词 传感器管理 威胁估计 目标函数 人工 概率假设密度滤波
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部