为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记...为解决交替方向乘子法(alternating direction method of multipliers,ADMM)正则化极限学习机(regularized extreme learning machine,RELM)迭代收敛速度慢和迭代后期误差衰减停滞的问题,提出一种基于动态步长ADMM的正则化极限学习机,记为VAR-ADMM-RELM.该算法在ADMM算法的基础上采用动态衰减步长进行迭代,并同时使用L1和L2正则化对模型复杂度进行约束,解得具有稀疏性和鲁棒性的极限学习机输出权重.在UCI和MedMNIST数据集中对VAR-ADMM-RELM、极限学习机(extreme learning machine,ELM)、正则化极限学习机(regularized ELM,RELM)和基于ADMM的L1正则化ELM(ADMMRELM)进行拟合、分类和回归对比实验.结果表明,VAR-ADMM-RELM算法的平均分类准确率和平均回归预测精度分别比ELM算法提升了1.94%和2.49%,较标准ADMM算法可以取得3~5倍的速度提升,且对异常值干扰具有更好的鲁棒性和泛化能力,在高维度多样本的场景下建模效率逼近标准极限学习机.该方法有效提升了ADMM算法的收敛速度,取得了比主流ELM算法更加优秀的性能表现.展开更多