期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于带权词格的循环神经网络句子语义表示建模 被引量:2
1
作者 张祥文 陆紫耀 +4 位作者 杨静 林倩 卢宇 王鸿吉 苏劲松 《计算机研究与发展》 EI CSCD 北大核心 2019年第4期854-865,共12页
目前,循环神经网络(recurrent neural network, RNN)已经被广泛应用于自然语言处理的文本序列语义表示建模.对于没有词语分隔符的语言,例如中文,该网络以经过分词预处理的词序列作为标准输入.然而,非最优的分词粒度和分词错误会对句子... 目前,循环神经网络(recurrent neural network, RNN)已经被广泛应用于自然语言处理的文本序列语义表示建模.对于没有词语分隔符的语言,例如中文,该网络以经过分词预处理的词序列作为标准输入.然而,非最优的分词粒度和分词错误会对句子语义表示建模产生负面作用,影响后续自然语言处理任务的进行.针对这些问题,提出基于带权词格的循环神经网络模型.该模型以带权词格作为输入,在每个时刻融合多个输入向量和对应的隐状态,融合生成新的隐状态.带权词格是一种包含指数级别分词结果的压缩数据结构,词格中的边权重在一定程度上体现了不同分词结果的一致性.特别地,利用词格权重作为融合函数中权重建模的监督信息,进一步提升了模型句子语义表示的学习效果.相比于传统循环神经网络,该模型不仅能够缓解分词错误对句子语义建模产生的负面影响,同时使得语义建模具有更强的灵活性.在情感分类和问句分类2个任务上的实验结果证明了该模型的有效性. 展开更多
关键词 带权词格 循环神经网络 句子语义建模 情感分类 问句分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部