结合高分子PTC(Positive temperature coefficient)发热的原理,介绍了在热水机组中引进高分子PTC为电加热带的开发背景,而通过对PTC自限温伴热带的原理介绍,分析了其性能和特征,确定了结构、安装等选型依据,最终完成了高分子PTC自限温...结合高分子PTC(Positive temperature coefficient)发热的原理,介绍了在热水机组中引进高分子PTC为电加热带的开发背景,而通过对PTC自限温伴热带的原理介绍,分析了其性能和特征,确定了结构、安装等选型依据,最终完成了高分子PTC自限温伴热带在热水机的整个开发过程的介绍。展开更多
Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coni...Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan展开更多
Leaf litter decomposition of liaotong oak (Quercus liaotungensis Koize) under temperate, subtropical and tropical forests was examined using a litter bag technique. Decomposition rates and release dynamics of nutrient...Leaf litter decomposition of liaotong oak (Quercus liaotungensis Koize) under temperate, subtropical and tropical forests was examined using a litter bag technique. Decomposition rates and release dynamics of nutrients Ca, Cu, Fe, K, Mg, Mn and P were observed separately at all three sites for I to 2 a periods. The leaf litter mass loss of liaotong oak was simulated with Olson's exponential model. Significant differences of leaf litter mass loss were found in forests of all three climate zones. Litter decomposition was accelerated with the increase of both annual mean precipitation and temperature. Our results agreed with other studies demonstrating that litter decomposition processes were greatly affected not only by soil organisms (including soil fauna and microorganisms), but also by chemical factors. These chemical factors were important for controlling the release of nutrients, especially elements of Fe and Mn. We also found that Fe and Mn content increased in semi-decayed leaf litter as litter mass decreased. This result was presumably due to chelating process which accumulated soil Fe and Mn ions into the decomposing litter. In conclusion, our study allowed us to determine the classification of the characteristics of different nutrient release patterns.展开更多
文摘结合高分子PTC(Positive temperature coefficient)发热的原理,介绍了在热水机组中引进高分子PTC为电加热带的开发背景,而通过对PTC自限温伴热带的原理介绍,分析了其性能和特征,确定了结构、安装等选型依据,最终完成了高分子PTC自限温伴热带在热水机的整个开发过程的介绍。
基金This study was supported by grant from the National Natu-ral Science Foundation of China (No. 30271068) the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ
文摘Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad-leaved/Korean pine forest (mountain dark brown forest soil), dark coniferous forest (mountain brown coniferous forest soil) and erman's birch forest (mountain soddy forest soil) in Changbai Mountain in September 2001. The soil water content was adjusted to five different levels (9%, 21%, 30%, and 43%) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35°C for 24 h. The results indicated that in broad-leaved/Korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35°C. Soil respiration rate increased with increase of soil water content within the limits of 21% to 37%, while it decreased with soil water content when water content was over the range. The result suggested the interactive effects of temperature and water content on soil respiration. There were significant differences in soil respiration among the various forest types. The soil respiration rate was highest in broad-leaved/Korean pine forest, middle in erman's birch forest and the lowest in dark coniferous forest. The optimal soil temperature and soil water content for soil respiration was 35°C and 37% in broad-leaved/Korean pine forest, 25°C and 21% in dark coniferous forest, and 35°C and 37% in erman's birch forest. Because the forests of broad-leaved/Korean pine, dark coniferous and erman's birch are distributed at different altitudes, the soil temperature had 4–5°C variation in different forest types during the same period. Thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil. Key words Soil temperature - Soil water content - Soil respiration - The typical forest ecosystem in Changbai Mountain CLC number S7118.51 Document code A Foundation item: This study was supported by grant from the National Natural Science Foundation of China (No. 30271068), the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (KZ-CX-SW-01-01B-12) and the grant from Advanced Programs of Institute of Applied Ecology Chinese Academy of Sciences.Biography: WANG Miao (1964-), male, associate professor in Institute of Applied Ecology, Chinese Academy of Science, Shenyang 110016, P. R. China.Responsible editor: Song Funan
文摘Leaf litter decomposition of liaotong oak (Quercus liaotungensis Koize) under temperate, subtropical and tropical forests was examined using a litter bag technique. Decomposition rates and release dynamics of nutrients Ca, Cu, Fe, K, Mg, Mn and P were observed separately at all three sites for I to 2 a periods. The leaf litter mass loss of liaotong oak was simulated with Olson's exponential model. Significant differences of leaf litter mass loss were found in forests of all three climate zones. Litter decomposition was accelerated with the increase of both annual mean precipitation and temperature. Our results agreed with other studies demonstrating that litter decomposition processes were greatly affected not only by soil organisms (including soil fauna and microorganisms), but also by chemical factors. These chemical factors were important for controlling the release of nutrients, especially elements of Fe and Mn. We also found that Fe and Mn content increased in semi-decayed leaf litter as litter mass decreased. This result was presumably due to chelating process which accumulated soil Fe and Mn ions into the decomposing litter. In conclusion, our study allowed us to determine the classification of the characteristics of different nutrient release patterns.