Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The d...Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.展开更多
Beam-beam interactions cause dynamic behaviour of the charged particle beams in circular coUiders, which is directly related to their luminosity. The linear beam-beam force introduces an additional quadrupole that per...Beam-beam interactions cause dynamic behaviour of the charged particle beams in circular coUiders, which is directly related to their luminosity. The linear beam-beam force introduces an additional quadrupole that perturbs betatron motion of particles, including dynamic β, dynamic emittance and beam-beam tune-shifts; while the nonlinear force may excite resonances and cause tune-spread. With the weak-strong beam-beam mode, the linear and nonlinear effects are studied, dynamic βand dy- namic emittance as functions of tunes are analyzed, and formulas of beam-beam octupole caused tune-spread are derived, starting from beam-beam potential and equations of particle motions, and the measures to increase luminosity of BEPCII are discussed.展开更多
The lunar soils evolution over time is mainly caused by space weathering that includes the impacts of varying-sized meteoroids and charged particles implantation of solar/cosmic winds as well.It has long been establis...The lunar soils evolution over time is mainly caused by space weathering that includes the impacts of varying-sized meteoroids and charged particles implantation of solar/cosmic winds as well.It has long been established that space weathering leads to the formation of outmost amorphous layers(50–200 nm in thickness)embedded nanophase iron(npFe^(0))around the mineral fragments,albeit the origin of the npFe^(0) remains controversial.The Chang’e-5(CE-5)mission returned samples feature the youngest mare basalt and the highest latitude sampling site,providing an opportunity to seek the critical clues for understanding the evolution of soils under space weathering.Here,we report the surface microstructures of the major minerals including olivine,pyroxene,anorthite,and glassy beads in the lunar soil of CE-5.Unlike the previous observations,only olivine in all crystals is surrounded by a thinner outmost amorphous SiO_(2) layer(∼10 nm thick)and embedded wüstite nanoparticles FeO(np-FeO,3–12 nm in size)instead of npFe^(0).No foreign volatile elements deposition layer and solar flare tracks can be found on the surface or inside the olivine and other minerals.This unique rim structure has not been reported for any other lunar,terrestrial,Martian,or meteorite samples so far.The observation of wüstite FeO and the microstructures support the existence of an intermediate stage in space weathering for lunar minerals by thermal decomposition.展开更多
文摘Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.
文摘Beam-beam interactions cause dynamic behaviour of the charged particle beams in circular coUiders, which is directly related to their luminosity. The linear beam-beam force introduces an additional quadrupole that perturbs betatron motion of particles, including dynamic β, dynamic emittance and beam-beam tune-shifts; while the nonlinear force may excite resonances and cause tune-spread. With the weak-strong beam-beam mode, the linear and nonlinear effects are studied, dynamic βand dy- namic emittance as functions of tunes are analyzed, and formulas of beam-beam octupole caused tune-spread are derived, starting from beam-beam potential and equations of particle motions, and the measures to increase luminosity of BEPCII are discussed.
基金supported by the Key Research Program of Chinese Academy of Sciences(ZDBS-SSW-JSC007-2)the Project from China National Space Administration(CE5C0400YJFM00507)。
文摘The lunar soils evolution over time is mainly caused by space weathering that includes the impacts of varying-sized meteoroids and charged particles implantation of solar/cosmic winds as well.It has long been established that space weathering leads to the formation of outmost amorphous layers(50–200 nm in thickness)embedded nanophase iron(npFe^(0))around the mineral fragments,albeit the origin of the npFe^(0) remains controversial.The Chang’e-5(CE-5)mission returned samples feature the youngest mare basalt and the highest latitude sampling site,providing an opportunity to seek the critical clues for understanding the evolution of soils under space weathering.Here,we report the surface microstructures of the major minerals including olivine,pyroxene,anorthite,and glassy beads in the lunar soil of CE-5.Unlike the previous observations,only olivine in all crystals is surrounded by a thinner outmost amorphous SiO_(2) layer(∼10 nm thick)and embedded wüstite nanoparticles FeO(np-FeO,3–12 nm in size)instead of npFe^(0).No foreign volatile elements deposition layer and solar flare tracks can be found on the surface or inside the olivine and other minerals.This unique rim structure has not been reported for any other lunar,terrestrial,Martian,or meteorite samples so far.The observation of wüstite FeO and the microstructures support the existence of an intermediate stage in space weathering for lunar minerals by thermal decomposition.